
exascaleproject.org

Parallel I/O with HDF5:
Overview, Tuning, and New Features

HPC Best Practices Webinar

Quincey Koziol & Suren Byna
Lawrence Berkeley National Laboratory (LBNL)

March 13, 2019

2

ExaHDF5 Team Members

• LBNL
– Suren Byna, Quincey

Koziol, Houjun Tang, Bin
Dong, Junmin Gu, Jialin Liu,
Alex Sim

• ANL
– Venkat Vishwanath, Rick

Zamora, Paul Coffman, Todd
Munson

• The HDF Group
– Scot Breitenfeld, John

Mainzer, Dana Robinson,
Jerome Soumagne, Richard
Warren, Neelam Bagha,
Elena Pourmal

4

WHAT IS HDF5?

5

HDF5 is like …

6

HDF5 is designed …

• for high volume and / or complex data

• for every size and type of system – from cell phones to supercomputers

• for flexible, efficient storage and I/O

• to enable applications to evolve in their use of HDF5 and to accommodate new models

• to support long-term data preservation

7

HDF5 Ecosystem

Fi
le

Fo

rm
at

Li
br

a
ry

D
at

a
M

od
el

D
oc

um
en

ta
ti

on
…

Support
ers

…
To

o
ls

8

What is HDF5?

• HDF5  Hierarchical Data Format, v5

• Open file format
– Designed for high volume and complex data

• Open source software
– Works with data in the format

• An extensible data model
– Structures for data organization and specification

9

HDF5 DATA MODEL

10

HDF5 File

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6An HDF5 file is a

container that
holds data objects.

11

HDF5 Data Model

File

Dataset Link

Group

Attribute Dataspace

DatatypeHDF5
Objects

12

HDF5 Dataset

• HDF5 datasets organize and contain data elements.
• HDF5 datatype describes individual data elements.
• HDF5 dataspace describes the logical layout of the data elements.

Integer: 32-bit, LE

HDF5 Datatype

Multi-dimensional array of
identically typed data elements

Specifications for single data
element and array dimensions

3

Rank

Dim[2] = 7

Dimensions

Dim[0] = 4
Dim[1] = 5

HDF5 Dataspace

13

HDF5 Dataspace

• Describes the logical layout of the elements in an HDF5
dataset
– NULL

• no elements
– Scalar

• single element
– Simple array (most common)

• multiple elements organized in a
rectangular array
– rank = number of dimensions
– dimension sizes = number of elements in each dimension
– maximum number of elements in each dimension

» may be fixed or unlimited

Extreme Scale Computing Argonne

14

HDF5 Dataspace
Two roles:

Spatial information for Datasets and Attributes
– Rank and dimensions
– Permanent part of object definition

Partial I/O: Dataspace and selection describe application’s
data buffer and data elements participating in I/O

Rank = 2
Dimensions = 4x6

Rank = 1
Dimension = 10

Start = 5
Count = 3

15

HDF5 Datatypes

• Describe individual data elements in an HDF5 dataset

• Wide range of datatypes supported
– Integer
– Float
– Enum
– Array
– User-defined (e.g., 13-bit integer)
– Variable-length types (e.g., strings, vectors)
– Compound (similar to C structs)
– More …

Extreme Scale Computing HDF5

16

HDF5 Datatypes

• Describe individual data elements in an HDF5 dataset

• Wide range of datatypes supported
– Integer
– Float
– Enum
– Array (similar to matrix)
– User-defined (e.g., 12-bit integer, 16-bit float)
– Variable-length types (e.g., strings, vectors)
– Compound (similar to C structs)
– More …

Extreme Scale Computing HDF5

17

HDF5 Dataset

Dataspace: Rank = 2
Dimensions = 5 x 3

Datatype: 32-bit Integer

3

5

12

18

HDF5 Dataset with Compound Datatype

uint16 char int32 2x3x2 array of float32
Compound
Datatype:

Dataspace: Rank = 2
Dimensions = 5 x 3

3

5

VVV
V V V
V V V

19

How are data elements stored? (1/2)

Chunked

Chunked &
Compressed

Better access time
for subsets;
extendible

Improves storage
efficiency,
transmission speed

Contiguous
(default)

Data elements
stored physically
adjacent to each
other

Buffer in memory Data in the file

20

How are data elements stored? (2/2)

External

Virtual

Data elements
stored outside the
HDF5 file, possibly
in another file
format
Data elements
actually stored in
“source datasets”,
using selections to
map

Compact
Data elements
stored directly
within object’s
metadata

Buffer in memory Data in the file

Dataset
Object Header

Dataset
Object Header

21

HDF5 Groups and Links

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOutViz

HDF5 groups
and links
organize
data objects.

Every HDF5 file
has a root group

Parameters
10;100;1000

Timestep
36,000

22

HDF5 Attributes

• Attributes “decorate” HDF5 objects

• Typically contain user metadata

• Similar to Key-Values:
– Have a unique name (for that object) and a value

• Analogous to a dataset
– “Value” is an array described by a datatype and a dataspace

– Do not support partial I/O operations; nor can they be compressed or
extended

24

HDF5 SOFTWARE

25

HDF5 Home Page

HDF5 home page: http://www.hdfgroup.org/solutions/hdf5/
– Latest release: HDF5 1.10.5 (1.10.6 coming soon)

HDF5 source code:
– Written in C, and includes optional C++, Fortran, and Java APIs

• Along with “High Level” APIs
– Contains command-line utilities (h5dump, h5repack, h5diff, ..) and

compile scripts
HDF5 pre-built binaries:

– When possible, include C, C++, Fortran, Java and High Level libraries.
• Check ./lib/libhdf5.settings file.

– Built with and require the SZIP and ZLIB external libraries

https://www.hdfgroup.org/solutions/hdf5/

26

Useful Tools For New Users

h5dump:
Tool to “dump” or display contents of HDF5 files

h5cc, h5c++, h5fc:
Scripts to compile applications (like mpicc, …)

HDFView: Java browser to view HDF5 files
http://support.hdfgroup.org/products/java/hdfview/

HDF5 Examples (C, Fortran, Java, Python, Matlab, …)
http://support.hdfgroup.org/HDF5/examples/

https://support.hdfgroup.org/products/java/hdfview/
http://support.hdfgroup.org/HDF5/examples/

27

HDF5 PROGRAMMING MODEL AND API

28

HDF5 Software Layers & Storage

HDF5 File
Format File Split

Files

File on
Parallel
Filesystem

Other

I/O Drivers

Virtual File
Layer Posix

I/O
Split
Files MPI I/O Custom

Internals Memory
Mgmt

Datatype
Conversion Filters Chunked

Storage
Version

Compatibility
and so on…

Language
Interfaces

C, Fortran, C++

HDF5 Data Model Objects
Groups, Datasets, Attributes, …

Tunable Properties
Chunk Size, I/O Driver, …

HD
F5

 L
ib

ra
ry

St
or

ag
e

netCDF-4High Level
APIs

HDFview

Ap
ps h5dumpH5Part

API
… …VPIC…

29

The General HDF5 API

• C, Fortran, Java, C++, and .NET bindings
– Also: IDL, MATLAB, Python (H5Py, PyTables), Perl, ADA, Ruby, …

• C routines begin with prefix: H5?
? is a character corresponding to the type of object the function acts on

Example Functions:

H5D : Dataset interface e.g., H5Dread
H5F : File interface e.g., H5Fopen
H5S : dataSpace interface e.g., H5Sclose

30

The HDF5 API

• For flexibility, the API is extensive
 300+ functions

• This can be daunting… but there is hope
A few functions can do a lot
Start simple
Build up knowledge as more features are needed

Victorinox
Swiss Army
Cybertool
34

31

General Programming Paradigm

• Object is opened or created
• Object is accessed, possibly many times
• Object is closed

• Properties of object are optionally defined
 Creation properties (e.g., use chunking storage)
 Access properties

32

Basic Functions

H5Fcreate (H5Fopen) create (open) File

H5Screate_simple/H5Screate create dataSpace

H5Dcreate (H5Dopen) create (open) Dataset

H5Dread, H5Dwrite access Dataset

H5Dclose close Dataset

H5Sclose close dataSpace

H5Fclose close File

33

Other Common Functions
DataSpaces: H5Sselect_hyperslab (Partial I/O)

H5Sselect_elements (Partial I/O)
H5Dget_space

DataTypes: H5Tcreate, H5Tcommit, H5Tclose
H5Tequal, H5Tget_native_type

Groups: H5Gcreate, H5Gopen, H5Gclose

Attributes: H5Acreate, H5Aopen_name, H5Aclose
H5Aread, H5Awrite

Property lists: H5Pcreate, H5Pclose
H5Pset_chunk, H5Pset_deflate

34

PARALLEL HDF5

39

(MPI-)Parallel vs. Serial HDF5
• PHDF5 allows multiple MPI processes in an MPI application to

perform I/O to a single HDF5 file
• Uses a standard parallel I/O interface (MPI-IO)
• Portable to different platforms
• PHDF5 files ARE HDF5 files conforming to the HDF5 file format

specification
• The PHDF5 API consists of:

– The standard HDF5 API
– A few extra knobs and calls
– A parallel “etiquette”

https://www.hdfgroup.org/HDF5/doc/H5.format.html

40

H5Fcreate (H5Fopen) create (open) File

H5Screate_simple/H5Screate create dataSpace

H5Dcreate (H5Dopen) create (open) Dataset

H5Dread, H5Dwrite access Dataset
H5Dclose close Dataset

H5Sclose close dataSpace

H5Fclose close File

Standard HDF5 “Skeleton”

41

Example of a PHDF5 C Program

A parallel HDF5 program has a few extra calls

…

file_id = H5Fcreate(FNAME, …, H5P_DEFAULT);
space_id = H5Screate_simple(…);
dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT, space_id, …);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, H5P_DEFAULT, …);
…

42

Example of a PHDF5 C Program

A parallel HDF5 program has a few extra calls

MPI_Init(&argc, &argv);
…
fapl_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(fapl_id, comm, info);
file_id = H5Fcreate(FNAME, …, fapl_id);
space_id = H5Screate_simple(…);
dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT, space_id, …);
xf_id = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);
status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id, …);
…

MPI_Finalize();

43

PHDF5 Implementation Layers
Science Application

Compute node Compute node Compute node

HDF5 Library

MPI Library

HDF5 file on Parallel File System

Interconnect network + I/O servers

Disk architecture and layout of data on disk

44

PHDF5 Etiquette

• PHDF5 opens a shared file with an MPI communicator
– Returns a file handle
– All future access to the file via that file handle

• All processes must participate in collective PHDF5 APIs
• Different files can be opened via different communicators
• All HDF5 APIs that modify file structure are collective!

– Object create / delete, attribute and group changes, etc.
– http://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

http://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

45

Collective vs. Independent I/O
• Collective I/O attempts to combine multiple smaller independent I/O ops

into fewer larger ops.
– Neither mode is preferable a priori

• MPI definition of collective calls:
– All processes of the communicator must participate in calls in the same

order:
Process 1 Process 2
call A();  call B(); call A();  call B(); **right**
call A();  call B(); call B();  call A(); **wrong**

– Independent calls are not collective 
– Collective calls are not necessarily synchronous, nor must they require

communication
• It could be that only internal state for the communicator changes

46

Parallel HDF5 tutorial examples

• For examples how to write different data patterns see:
http://support.hdfgroup.org/HDF5/Tutor/parallel.html

HDF5 Overview @ UC Berkeley

April 26, 2017

https://support.hdfgroup.org/HDF5/Tutor/parallel.html

51

DIAGNOSTICS AND INSTRUMENTATION
Tools

52

Data and Metadata I/O

Data

• Problem-sized

• I/O can be independent or
collective

• Improvement targets:
– Avoid unnecessary I/O
– I/O frequency
– Layout on disk

• Different I/O strategies for
chunked layout

– Aggregation and balancing
– Alignment

Metadata

• Small
• Reads can be independent or

collective
• All modifying I/O must be

collective
• Improvement targets:

– Metadata design
– Use the latest library version, if

possible
– Metadata cache

• In desperate cases, take control
of evictions

53

Don’t Forget: It’s a Multi-layer Problem

54

A Textbook Example

User reported:

• Independent data transfer mode is
much slower than the collective data
transfer mode

• Data array is tall and thin: 230,000
rows by 4 columns

:
:
:

230,000 rows
:
:
:

55

Symptoms

Writing to one dataset
– 4 MPI processes  4 columns
– Datatype is 8-byte floats (doubles)
– 4 processes x 1000 rows x 8 bytes = 32,000 bytes

% mpirun -np 4 ./a.out 1000
Execution time: 1.783798 s.

% mpirun -np 4 ./a.out 2000
Execution time: 3.838858 s. (linear scaling))

• 2 sec. extra for 1000 more rows = 32,000 bytes.
16KB/sec Way too slow!!!

56

“Poor Man’s Debugging”

• Build a version of PHDF5 with
– ./configure --enable-debug --enable-parallel …

• This allows the tracing of MPIO I/O calls in the HDF5 library such as
MPI_File_read_xx and MPI_File_write_xx

• Don’t forget to:
– % setenv H5FD_mpio_Debug “rw”

• You’ll get something like this…

57

Independent and Contiguous
% setenv H5FD_mpio_Debug “rw”

% mpirun -np 4 ./a.out 1000 # Indep.; contiguous.

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=2056 size_i=8

in H5FD_mpio_write mpi_off=2048 size_i=8

in H5FD_mpio_write mpi_off=2072 size_i=8

in H5FD_mpio_write mpi_off=2064 size_i=8

in H5FD_mpio_write mpi_off=2088 size_i=8

in H5FD_mpio_write mpi_off=2080 size_i=8

…

• A total of 4000 of these 8 bytes writes == 32,000 bytes.

58

Plenty of Independent and Small Calls

Diagnosis:

• Each process writes one
element of one row, skips to
next row, writes one element,
and so on.

• Each process issues 230,000
writes of 8 bytes each.

:
:
:

230,000 rows
:
:
:

59

Chunked by Column
% setenv H5FD_mpio_Debug “rw”

% mpirun -np 4 ./a.out 1000 # Indep., Chunked by column.

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=3688 size_i=8000

in H5FD_mpio_write mpi_off=11688 size_i=8000

in H5FD_mpio_write mpi_off=27688 size_i=8000

in H5FD_mpio_write mpi_off=19688 size_i=8000

in H5FD_mpio_write mpi_off=96 size_i=40

in H5FD_mpio_write mpi_off=136 size_i=544

in H5FD_mpio_write mpi_off=680 size_i=120

in H5FD_mpio_write mpi_off=800 size_i=272
…

• Execution time: 0.011599 s.

Metadata

Metadata

Dataset elements

60

Use Collective Mode or Chunked Storage

Remedy:

• Collective I/O will combine many
small independent calls into few but
bigger calls

• Chunks of columns speeds up too

:
:
:

230,000 rows
:
:
:

61

Collective vs. independent write

0

100

200

300

400

500

600

700

800

900

1000

0.25 0.5 1 1.88 2.29 2.75

Se
co

nd
s

to
 w

rit
e

Data size in MBs

Independent write
Collective write

62

Other Helpful Tools…

• Two kinds of tools:
– I/O benchmarks for measuring a system’s I/O capabilities
– I/O profilers for characterizing applications’ I/O behavior

• Two examples:
– h5perf (in the HDF5 source code distro)
– Darshan (from Argonne National Laboratory)

• Profilers have to compromise between
– A lot of detail  large trace files and overhead
– Aggregation  loss of detail, but low overhead

http://www.mcs.anl.gov/research/projects/darshan/

63

I/O Patterns

64

h5perf(_serial)

• Measures performance of a filesystem for different I/O patterns and APIs
• Three File I/O APIs for the price of one!

– POSIX I/O (open/write/read/close…)
– MPI-I/O (MPI_File_{open,write,read,close})
– HDF5 (H5Fopen/H5Dwrite/H5Dread/H5Fclose)

• An indication of I/O speed ranges and HDF5 overheads
• Expectation management…

65

A Serial Run

Minimum

Average

Maximum
0

50

100

150

200

250

300

350

400

450

500

POSIX HDF5
POSIX

HDF5
POSIX

HDF5
POSIX

HDF5

Write

Write Open-Close
Read

Read Open-Close

M
B/

s

h5perf_serial, 3 iterations, 1 GB dataset, 1 MB transfer buffer,
HDF5 dataset contiguous storage, HDF5 SVN trunk, NCSA BW

Minimum

Average

Maximum

66

A Parallel Run

Minimum
Average

Maximum

0

500

1000

1500

2000

2500

3000

3500

POSIX MPI-IO HDF5 POSIX MPI-IO HDF5 POSIX MPI-IO HDF5 POSIX MPI-IO HDF5

Write
Write Open-Close

Read

Read Open-Close

M
B/

s

h5perf, 3 MPI processes, 3 iterations, 3 GB dataset (total),
1 GB per process, 1 GB transfer buffer,

HDF5 dataset contiguous storage, HDF5 SVN trunk, NCSA BW

Minimum

Average

Maximum

67

Darshan (ANL)

• Design goals:
– Transparent integration with user environment
– Negligible impact on application performance

• Provides aggregate figures for:
– Operation counts (POSIX, MPI-IO, HDF5, PnetCDF)
– Datatypes and hint usage
– Access patterns: alignments, sequentiality, access size
– Cumulative I/O time, intervals of I/O activity

• Does not provide I/O behavior over time
• Excellent starting point, maybe not your final stop

68

Darshan Sample Output

Source: NERSC

http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/

74

PARALLEL HDF5 TUNING

90

Metadata Read Storm Problem (I)

• All metadata “write” operations are required to be collective:

• Metadata read operations are not required to be collective:

if(0 == rank)
H5Dcreate(“dataset1”);

else if(1 == rank)
H5Dcreate(“dataset2”);



/* All ranks have to call */
H5Dcreate(“dataset1”);
H5Dcreate(“dataset2”);



if(0 == rank)
H5Dopen(“dataset1”);

else if(1 == rank)
H5Dopen(“dataset2”);

/* All ranks have to call */
H5Dopen(“dataset1”);
H5Dopen(“dataset2”);



91

Metadata Read Storm Problem (II)

• Metadata read operations are treated by the library as
independent read operations.

• Consider a very large MPI job size where all processes
want to open a dataset that already exists in the file.

• All processes
– Call H5Dopen(“/G1/G2/D1”);
– Read the same metadata to get to the dataset and the metadata

of the dataset itself
• IF metadata not in cache, THEN read it from disk.

– Might issue read requests to the file system for the same small
metadata.

•  READ STORM

92

Avoiding a Read Storm

• Application sets hint that metadata access is done collectively
– A property on an access property list: H5Pset_all_coll_metadata_ops
– If set on the file access property list, then all metadata read operations will be required to be

collective

• Can be set on individual object property list or on a file level
• If set, MPI rank 0 will issue the read for a metadata entry to the file system and

broadcast to all other ranks

93

Successful Collective Dataset I/O

• Request Collective Dataset I/O:
…

xf_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);

H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id, …);

• However, collective I/O can be changed to independent I/O within HDF5:
– Datatype conversion, data transform, layout isn’t contiguous or chunked

94

Successful Collective Dataset I/O

• Check for Collective I/O and why I/O was performed Independently:
…

xf_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);

H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id, …);

H5Pget_mpio_actual_io_mode(xf_id, &io_mode);

if(io_mode == H5D_MPIO_NO_COLLECTIVE)

H5Pget_mpio_no_collective_cause(xf_id, &local_cause,
&global_cause);

99

ECP EXAHDF5

100

ECP ExaHDF5 project mission

• Work with ECP applications and facilities to meet their needs

• Productize HDF5 features

• Support, maintain, package, and release HDF5

• Research toward future architectures and incoming requests from ECP teams

101

ECP Engagement – AD and Co-design teams

ECP AD team Type of engagement Status ExaHDF5 POC(s) / ECP team POC(s)
Subsurface simulation – Chombo I/O I/O performance tuning Improved performance Suren Byna, Quincey / Brian van Straalen

QMCPACK File close performance issue Improved performance Rick Zamora / Ye Luo

EQSim – SW4 HDF5 I/O implementation Benchmark developed Suren Byna / Hans Johansen

WarpX Performance issue Improved performance Alex Sim / Jean-Luc Vay

ExaFEL SWMR enhancements Prototype in testing Quincey Koziol / Amedeo Perazzo

ExaSky – HACC I/O performance tuning Tuning performance Scot Breitenfeld / Hal Finkel, Salman Habib

ExaSky – Nyx I/O performance tuning Tuned performance for the
AMReX I/O benchmark

Suren Byna / Ann Almgren, Zarija Lukic

AMReX co-design center AMReX I/O performance
tuning

Tuned performance for the
AMReX I/O benchmark

Suren Byna / Ann Almgren, Andrew Myers

E3SM-MMF Testing Data Elevator The AD team tested the
feature

Suren Byna / Jayesh Krishna

Lattice QCD, NWChemEx, CANDLE I/O using HDF5 Initial communications w/
the AD teams

Suren Byna, Venkat Vishwanath / Chulwoo
(LQCD), Ray Bair (NWChem), Venkat
(CANDLE)

ExaLearn I/O for ML applications Initial communications Quincey Koziol / Quincey Koziol

More details: https://confluence.exascaleproject.org/display/STDM10

https://confluence.exascaleproject.org/display/STDM10

102

ECP & ASCR Engagement – ST teams

ECP ST team Type of engagement Status ExaHDF5 POC(s) / ECP team POC(s)
ADIOS Interoperability of HDF5 and

other file formats
• Developing VOL to read ADIOS data
• ADIOS R/W of HDF5 data

Suren Byna, Quincey / Junmin Gu, John Wu

DataLib Interoperability of HDF5 and
other file formats

• VOL to read netCDF data – To Do
• HDF5 relies on MPI-IO

Venkat Vishwanath / Rob Ross, Rob Latham

UnifyCR Data Elevator can use a unified
node-local storage namespace

Discussion with the UnifyCR teams on
the API, data movement strategy, etc.

Suren Byna / Kathryn Mohror

EZ Compression in HDF5 EZ team developing parallel filter with
HDF5

Scot Breitenfeld / Franck Cappello, Sheng Di

ZFP Compression in HDF5 Initial communications Suren Byna / Peter Lindstorm

ALPINE VTK / HDF5 mapping Initial communications Suren Byna, Scot Breitenfeld / Jim Ahrens

108

Productizing HDF5 features

• Virtual Object Layer (VOL)
• Indexing and querying raw data

109

Virtual Object Layer (VOL)

• Goal: Provide an application with the HDF5 data
model and API, but allow different underlying
storage mechanisms

• Enables developers to easily use HDF5 on novel
current and future storage systems
– Prototype plugins for using burst buffer storage

transparently and for accessing DAOS are available
– VOL plugins for reading netCDF and ADIOS data are in

development

• Integrated into the HDF5 trunk
https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/

https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/browse?at=refs/heads/vol_integration

110

Indexing and querying datasets

• HDF5 index objects and API routines allow the creation of indexes on the
contents of HDF5 containers, to improve query performance

• HDF5 query objects and API routines enable the construction of query requests
for execution on HDF5 containers
– H5Qcreate
– H5Qcombine
– H5Qapply
– H5Qclose

0
10
20
30
40
50
60
70
80
90

1 2 4 8 16 32

Build Index (seconds)

of MPI procs

Ti
m

e
(s

)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 4 8 16 32

Evaluate Query (seconds)

of MPI procs

Ti
m

e
(s

)

• Parallel scaling of index generation and query resolution is
evidenced even for small-scale experiments:

• HDF5 Bitbucket repo containing the “topic-parallel-indexing” source
code: https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5

https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5

111

Support and maintenance

• HDF5 home page: http://hdfgroup.org/HDF5/
– Latest release: HDF5 1.10.5 (1.10.6, 1.12.0 Spring 2019)
– Bitbucket repo: https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/

• Documentation is available
https://portal.hdfgroup.org/display/HDF5/HDF5

• Support: HDF Helpdesk help@hdfgroup.org
• HDF-FORUM https://forum.hdfgroup.org/
• For ECP teams: Contact the ExaHDF5 POCs for existing collaborations and the

PIs for new collaborations

http://hdfgroup.org/HDF5/
https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/
https://portal.hdfgroup.org/display/HDF5/HDF5
mailto:help@hdfgroup.org
https://forum.hdfgroup.org/

112

New features for exascale architectures

• Data Elevator to take advantage of burst buffers
• Topology-aware I/O
• Full Single writer multiple readers (SWMR) functionality
• Asynchronous I/O
• Querying metadata
• Interoperability with other file formats

113

Data Elevator for write and read caching using burst buffers

• Data Elevator write caching prototype
– Transparent data movement in storage hierarchy
– In situ data analysis capability using burst buffers

• Tested with a PIC code and Chombo-IO benchmark

• Applications evaluating Data Elevator
– E3SM-MMF and Sandia ATDM project is evaluating performance
– Other candidates: EQSim, AMReX

• Installed on NERSC’s Cori system (module load data-elevator)

Memory

Parallel file system

Archival storage
(HPSS tape)

Shared burst buffer

Node-local storage

Campaign storage

114

Topology-aware I/O

• Taking advantage of the topology of compute and I/O nodes and network
among them improves overall I/O performance

• Developing topology-aware data-movement algorithms and collective I/O
optimizations within a new HDF5 virtual file driver (VFD)

Performance comparison of the new HDF5
VFD, using one-sided aggregation, with the
default binding to Cray MPICH MPI-IO. Data

was collected on Theta using an I/O
benchmarking tool (the HDF5 Exerciser),

Prototype implementation: CCIO branch
https://bitbucket.hdfgroup.org/projects/HDFFV/
repos/hdf5/

https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/

115

Full functionality of Single Writer, Multiple Readers (SWMR)

• SWMR enables a single writing process to update an HDF5 file, while multiple reading
processes access the file in a concurrent, lock-free manner

• Previously limited to the narrow use-case of appending new elements to HDF5 datasets

• Full SWMR extends existing SWMR to support all metadata operations, such as object
creation and deletion, attribute updates

In ECP, ExaFEL project requires this feature. In
general, Full SWMR is useful for managing
experimental and observational data

Full SWMR branch of HDF5:
https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/
browse?at=refs%2Fheads%2Ffull_swmr

https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/browse?at=refs/heads/full_swmr

116

Features in development

• Asynchronous I/O
– Store data in an intermediate faster memory or storage location and move data

asynchronously to storage
– Prototype of the async I/O VOL with Argobots in progress

• Interoperability with other file formats
– Capability to read netCDF and ADIOS files
– Developed a VOL to read ADIOS files and netCDF read VOL dev in progress

• Indexing and querying metadata
– HDF5 file metadata querying – design is in progress

• Breaking collective dependency in updating metadata
– Metadata updates are collective operations, which may have high overhead
– Developing independent updates, inspired by blockchain technology

119

Roadmap of current project

LBL

ANL THG

THG LBL

LBL THG

LBL THG

LBL THG
THG

LBL

ANL
LBL ANL THG

THG

LBL

LBL

120

FY20 – 22 Plans

– HDF5 I/O to handle extreme scalability
• Performance enhancement features to use memory and storage hierarchy of exascale systems

– Productization of features that have been prototyped
• Various features have been developed recently to improve data access performance and data

reduction, and to open the HDF5 API
– Support for ECP apps

• I/O performance tuning for ECP apps
– Support for DOE exascale facilities

• Deployment and performance tuning
– Software Maintenance

• Integration of features, bug fixes, releases of ECP features

121

Experimental & Observational Data (EOD) Management
Requirements

• Experimental and observational science (EOS) facilities have data
management requirements beyond existing HDF5 features

• Targeted science drivers
- LCLS / LCLS-II, NCEM, ALS, NIF, LSST

• Requirements
- Multiple producers and multiple consumers of data
- Remote streaming synchronization
- Handling changes in data, data types, and data schema
- Search metadata and provenance directly in HDF5 files
- Support for different forms of data - Streaming, sparse, KV, etc.
- Optimal data placement

122

EOD-HDF5 - Features

• Multi-modal access and distributed data in workflows
- Multiple-Writers / Multiple-Readers (“MWMR” or “Multi-SWMR”)
- Distribution of local changes to remote locations

- “rsync for HDF5 data”
• Data model extensions

- Storing new forms of data (Key-Value pairs, Sparse data, Column-oriented data)
- Addressing science data schema variation
- Managing collections of containers

• Metadata and Provenance management
- Capturing and storing rich metadata contents and provenance
- Searching metadata and provenance
- Optimal data placement based on data analysis patterns

exascaleproject.org

Thank you!

	Parallel I/O with HDF5:�Overview, Tuning, and New Features
	ExaHDF5 Team Members
	What is HDF5?
	HDF5 is like …
	HDF5 is designed …
	HDF5 Ecosystem
	What is HDF5?
	HDF5 Data model
	HDF5 File
	HDF5 Data Model
	HDF5 Dataset
	HDF5 Dataspace
	HDF5 Dataspace
	HDF5 Datatypes
	HDF5 Datatypes
	HDF5 Dataset
	HDF5 Dataset with Compound Datatype
	How are data elements stored? (1/2)
	How are data elements stored? (2/2)
	HDF5 Groups and Links
	HDF5 Attributes
	HDF5 software
	HDF5 Home Page
	Useful Tools For New Users
	HDF5 Programming model and Api
	HDF5 Software Layers & Storage
	The General HDF5 API
	The HDF5 API
	General Programming Paradigm
	Basic Functions
	Other Common Functions
	Parallel HDF5
	(MPI-)Parallel vs. Serial HDF5
	Standard HDF5 “Skeleton”
	Example of a PHDF5 C Program
	Example of a PHDF5 C Program
	PHDF5 Implementation Layers
	PHDF5 Etiquette
	Collective vs. Independent I/O
	Parallel HDF5 tutorial examples
	DiagnosticS and Instrumentation�
	Data and Metadata I/O
	Don’t Forget: It’s a Multi-layer Problem
	A Textbook Example
	Symptoms
	“Poor Man’s Debugging”
	Independent and Contiguous
	Plenty of Independent and Small Calls
	Chunked by Column
	Use Collective Mode or Chunked Storage
	Collective vs. independent write
	Other Helpful Tools…
	I/O Patterns
	h5perf(_serial)
	A Serial Run
	A Parallel Run
	Darshan (ANL)
	Darshan Sample Output
	Parallel HDF5 Tuning
	Metadata Read Storm Problem (I)
	Metadata Read Storm Problem (II)
	Avoiding a Read Storm
	Successful Collective Dataset I/O
	Successful Collective Dataset I/O
	ECP ExaHDF5
	ECP ExaHDF5 project mission
	ECP Engagement – AD and Co-design teams
	ECP & ASCR Engagement – ST teams
	Productizing HDF5 features
	Virtual Object Layer (VOL)
	Indexing and querying datasets
	Support and maintenance
	New features for exascale architectures
	Data Elevator for write and read caching using burst buffers
	Topology-aware I/O
	Full functionality of Single Writer, Multiple Readers (SWMR)
	Features in development
	Roadmap of current project
	FY20 – 22 Plans
	Experimental & Observational Data (EOD) Management Requirements�
	EOD-HDF5 - Features
	Thank you!

