
ECP-RPT-ST-0001-2018

ECP Software Technology Capability Assessment Report

Michael A. Heroux, Director ECP ST
Jonathan Carter, Deputy Director ECP ST
Rajeev Thakur, Programming Models & Runtimes Lead
Jeffrey Vetter, Development Tools Lead
Lois Curfman McInnes, Mathematical Libraries Lead
James Ahrens, Data & Visualization Lead
J. Robert Neely, Software Ecosystem & Delivery Lead

July 1, 2018

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or
any agency thereof.

ECP-RPT-ST-0001-2018

ECP Software Technology Capability Assessment Report
Office of Advanced Scientific Computing Research

Office of Science
US Department of Energy

Office of Advanced Simulation and Computing
National Nuclear Security Administration

US Department of Energy

July 1, 2018

Exascale Computing Project (ECP) iii ECP-RPT-ST-0001-2018

REVISION LOG

Version Date Description

1.0 July 1, 2018 ECP ST Capability Assessment Report

Exascale Computing Project (ECP) iv ECP-RPT-ST-0001-2018

EXECUTIVE SUMMARY

The Exascale Computing Project (ECP) Software Technology (ST) Focus Area is responsible for developing
critical software capabilities that will enable successful execution of ECP applications, and for providing
key components of a productive and sustainable Exascale computing ecosystem that will position the US
Department of Energy (DOE) and the broader high performance (HPC) community with a firm foundation
for future extreme-scale computing capabilities.

This ECP ST Capability Assessment Report (CAR) provides an overview and assessment of current ECP
ST capabilities and activities, giving stakeholders and the broader HPC community information that can be
used to assess ECP ST progress and plan their own efforts accordingly. ECP ST leaders commit to updating
this document on regular basis (targeting approximately every six months). Highlights from the report are
presented here.

Origin of the ECP ST CAR: The CAR is a follow-on and expansion of the ECP Software Technology
Gap Analysis [1]. The CAR includes a gap analysis as well as a broader description of ECP ST efforts,
capabilities and plans.

The Exascale Computing Project Software Technology (ECP ST) focus area represents the
key bridge between Exascale systems and the scientists developing applications that will run
on those platforms: ECP ST efforts contribute to 89 software products (Section 3.1) in five technical
areas (Table 1). 33 of the 89 products are broadly used in the HPC community and require substantial
investment and transformation in preparation for Exascale architectures. An additional 23 are important to
some existing applications and typically represent new capabilities that enable new usage models for realizing
the potential that Exascale platforms promise. The remaining products are in early development phases,
addressing emerging challenges and opportunities that Exascale platforms present.

Programming Models & Runtimes: ECP ST is developing key enhancements to MPI and OpenMP,
addressing in particular the important design and implementation challenges of combining massive inter-node
and intra-node concurrency into an application. We are also developing a diverse collection of products that
further address next generation node architectures, to improve realized performance, ease of expression and
performance portability.

Development Tools: We are enhancing existing widely used performance tools and developing new
tools for next-generation platforms. As node architectures become more complicated and concurrency
even more necessary, impediments to performance and scalability become even harder to diagnose and fix.
Development tools provide essential insight into these performance challenges and code transformation and
support capabilities that help software teams generate efficient code, utilize new memory systems and more.

Mathematical Libraries: High performance scalable math libraries have enabled parallel execution
of many applications for decades. ECP ST is providing the next generation of these libraries to address
needs for latency hiding, improved vectorization, threading and strong scaling. In addition, we are addressing
new demands for system-wide scalability including improved support for coupled systems and ensemble
calculations. The math libraries teams are also spearheading the software development kit (SDK) initiative
that is a pillar of the ECP ST software delivery strategy (Section 1.2.1).

Data & Visualization: ECP ST has a large collection of data management and visualization products
that provide essential capabilities for compressing, analyzing, moving and managing data. These tools are
becoming even more important as the volume of simulation data we produce grows faster than our ability to
capture and interpret it.

SW Ecosystem & Delivery: This new technical area of ECP ST provides important enabling tech-
nologies such as containers and experimental OS environments that allow ECP ST to provide requirements,
analysis and design input for vendor products. This area also provides the critical resources and staffing
that will enable ECP ST to perform continuous integration testings, and product releases. Finally, this
area engages with software and system vendors, and DOE facilities staff to assure coordinated planning and
support of ECP ST products.

ECP ST Software Delivery mechanisms: ECP ST delivers software capabilities to users via several
mechanisms (Section 3). Almost all products are delivered via source codes to at least some of their users.
Each of the major DOE computing facilities provides direct support of some users for about 20 ECP ST
products. About 10 products are available via vendor software stack and via binary distributions such as
Linux distributions.

Exascale Computing Project (ECP) v ECP-RPT-ST-0001-2018

ECP ST Project Restructuring: ECP ST completed a significant restructuring in November 2017
(Section 1.3). We reduced the number of technical areas from 8 to 5 and reduced the number of L4 projects
significantly by simplifying the organization of ATDM projects. We introduced new projects for software
development kits that are a key organizational feature for designing, testing and delivering our software.
Finally, we introduced a new technical area (SW Ecosystem & Delivery) that provides the critical capabilities
we need for delivering a sustainable software ecosystem.

ECP ST Project Overviews: A significant portion of this report includes 2-page synopses of each
ECP ST project (Section 4), including a project overview, key challenges, solution strategy, recent progress
and next steps.

Project organization: ECP ST has established a tailored project management structure using impact
goals/metrics, milestones, regular project-wide video meetings, monthly and quarterly reporting, and an
annual review process. This structure supports project-wide communication, and coordinated planning and
development that enables 55 projects and more than 250 contributors to create the ECP ST software stack.

Exascale Computing Project (ECP) vi ECP-RPT-ST-0001-2018

TABLE OF CONTENTS

EXECUTIVE SUMMARY v

LIST OF FIGURES x

LIST OF TABLES xiii

1 Introduction 1
1.1 Background . 1
1.2 ECP Software Technology Approach . 4

1.2.1 Software Development Kits . 4
1.2.2 ECP ST Software Delivery . 6

1.3 ECP ST Project Restructuring . 8
1.4 New Project Efforts . 8

1.4.1 FFTs . 12
1.4.2 LLNL Math Libraries . 13

2 ECP ST Technical Areas 14
2.1 Programming Models & Runtimes . 14

2.1.1 Scope and Requirements . 14
2.1.2 Assumptions and Feasibility . 14
2.1.3 Objectives . 14
2.1.4 Plan . 14
2.1.5 Risks and Mitigation Strategies . 15

2.2 Development Tools . 15
2.2.1 Scope and Requirements . 15
2.2.2 Assumptions and Feasibility . 16
2.2.3 Objectives . 16
2.2.4 Plan . 16
2.2.5 Risks and Mitigations Strategies . 17

2.3 Mathematical Libraries . 17
2.3.1 Scope and Requirements . 17
2.3.2 Assumptions and Feasibility . 18
2.3.3 Objectives . 18
2.3.4 Plan . 18
2.3.5 Risks and Mitigations Strategies . 18

2.4 Data & Visualization . 19
2.4.1 Scope and Requirements . 19
2.4.2 Assumptions and Feasibility . 20
2.4.3 Objectives . 20
2.4.4 Plan . 21
2.4.5 Risks and Mitigations Strategies . 21

2.5 SW Ecosystem & Delivery . 22
2.5.1 Scope and Requirements . 22
2.5.2 Assumptions and Feasibility . 23
2.5.3 Objectives . 23
2.5.4 Plan . 24
2.5.5 Risks and Mitigations Strategies . 24

3 ECP ST Deliverables 25
3.1 ECP ST Products . 25
3.2 Standards Committees . 28
3.3 Contributions to External Software Products . 28

Exascale Computing Project (ECP) vii ECP-RPT-ST-0001-2018

4 ECP ST Project Summaries 31
4.1 Programming Models & Runtimes . 32

4.1.1 Programming Models & Runtimes Software Development Kits 33
4.1.2 LANL ATDM Programming Models and Runtimes . 34
4.1.3 LLNL ATDM Programming Models and Runtimes . 36
4.1.4 SNL ATDM Programming Models: Kokkos . 38
4.1.5 SNL ATDM Programming Models: DARMA . 40
4.1.6 xGA . 42
4.1.7 ISC4MCM (RAJA) . 44
4.1.8 Exascale MPI . 46
4.1.9 Legion . 48
4.1.10 Distributed Tasking at Exascale: PaRSEC . 50
4.1.11 Kokkos Support . 52
4.1.12 2.3.1.11 Open MPI for Exascale (OMPI-X) . 54
4.1.13 Runtime System for Application-Level Power Steering on Exascale Systems 56
4.1.14 SOLLVE . 58
4.1.15 Argobots: Flexible, High-Performance Lightweight Threading 60
4.1.16 BOLT: Lightning Fast OpenMP . 62
4.1.17 UPC++ . 64
4.1.18 GASNet-EX . 66
4.1.19 Enhancing Qthreads for ECP Science and Energy Impact 68
4.1.20 SICM . 70

4.2 Development Tools . 73
4.2.1 Development Tools Software Development Kits . 74
4.2.2 LANL ATDM Tools . 75
4.2.3 LLNL ATDM Development Tools Projects . 76
4.2.4 SNL ATDM Tools . 78
4.2.5 Exascale Code Generation Toolkit . 80
4.2.6 Exa-PAPI . 82
4.2.7 2.3.2.07-YTune . 84
4.2.8 HPCToolkit . 86
4.2.9 PROTEAS: Programming Toolchain for Emerging Architectures and Systems 88
4.2.10 PROTEAS — TAU Performance System . 90
4.2.11 PROTEAS — PAPYRUS: Parallel Aggregate Persistent Storage 92
4.2.12 PROTEAS — Clacc: OpenACC in Clang and LLVM 94

4.3 Mathematical Libraries . 96
4.3.1 xSDK4ECP . 97
4.3.2 hypre . 99
4.3.3 The Flexible Computational Science Infrastructure (FleCSI) Project 101
4.3.4 LLNL ATDM Math Libraries . 103
4.3.5 ATDM SNL Math Libraries . 105
4.3.6 Enabling Time Integrators for Exascale Through SUNDIALS 107
4.3.7 PETSc-TAO . 109
4.3.8 Factorization Based Sparse Solvers and Preconditioners for Exascale 111
4.3.9 ForTrilinos . 113
4.3.10 SLATE . 115
4.3.11 PEEKS . 118
4.3.12 ALExa . 120

4.4 Data & Visualization . 122
4.4.1 Data & Visualization Software Development Kits . 123
4.4.2 2.3.4.02 LANL ATDM Data and Visualization . 124
4.4.3 LLNL ATDM Data & Viz Projects: Workflow . 126
4.4.4 SNL ATDM Data and Visualization: IOSS and FAODEL 128
4.4.5 SNL ATDM Data and Visualization: Visualization Capabilities 130

Exascale Computing Project (ECP) viii ECP-RPT-ST-0001-2018

4.4.6 2.3.4.05 STDM07-VeloC: Very Low Overhead Transparent Multilevel Checkpoint/Restart132
4.4.7 ECP EZ: Fast, Effective, Parallel Error-bounded Exascale Lossy Compression for

Scientific Data . 134
4.4.8 UnifyCR – A file system for burst buffers . 136
4.4.9 ExaHDF5 . 138
4.4.10 ADIOS . 140
4.4.11 DataLib . 142
4.4.12 ZFP: Compressed Floating-Point Arrays . 144
4.4.13 ALPINE . 146
4.4.14 ECP/VTK-m . 148

4.5 SW Ecosystem & Delivery . 150
4.5.1 Software Development Kits . 151
4.5.2 LANL ATDM Software Ecosystem & Delivery Projects - Resilience Subproject 153
4.5.3 LANL ATDM Software Ecosystem & Delivery Projects - BEE/Charliecloud Subproject 153
4.5.4 2.3.5.03 LLNL ATDM SW Ecosystem & Delivery: DevRAMP 155
4.5.5 Sandia ATDM Software Ecosystem and Delivery - Technology Demonstrator 157
4.5.6 Sandia ATDM Software Ecosystem and Delivery - OS/On-Node Runtime 158
4.5.7 Argo . 159
4.5.8 Flang . 161

5 Conclusion 163

Exascale Computing Project (ECP) ix ECP-RPT-ST-0001-2018

LIST OF FIGURES

1 The ECP Work Breakdown Structure through Level 3 (L3). 3
2 The xSDK is the first SDK for ECP ST, in the Mathematical Libraries technical area 1.

The xSDK provides the collaboration environment for improving build, install and testing
capabilities for member packages such as hypre, PETSc, SuperLU and Trilinos (and other
products with green background). Domain components (see orange ovals) are also an important
category of the ecosystem, providing leveraged investments for common components in a specific
scientific software domain. xSDK capabilities are essential for supporting the multi-physics and
multi-scale application requirement that lead to combined use of xSDK libraries. Furthermore,
the availability of advanced software platforms such as GitHub, Confluence, JIRA and others
enable the level of collaboration needed to create an SDK from independently developed packages. 6

3 xSDK Community Policies emerged from challenging and passionate discussions
about essential values of the math libraries community. Once established, these
community policies represent a living statement of what it means to be part of an SDK, and
are used as the criteria for welcoming future members. 7

4 The ECP ST software stack is delivered to the user community through several
channels. Key channels are via source code, increasing using SDKs, direct to Facilities in
collaboration with ECP HI, via binary distributions, in particular the OpenHPC project and
via HPC vendors. The SDK leadership team includes ECP ST team members with decades of
experience delivering scientific software products. 9

5 Project remapping summary from Phase 1 (through November 2017) to Phase 2 (After
November 2017) . 9

6 ECP ST before November 2017 reorganization. This conceptually layout emerged from several
years of Exascale planning, conducted primarily within the DOE Office of Advanced Scientific
Computing Research (ASCR). After a significant restructuring of ECP that removed much of
the facilities activities and reduced the project timeline from 10 to seven years, and a growing
awareness of what risks had diminished, this diagram no longer represented ECP ST efforts
accurately. 11

7 ECP ST after November 2017 reorganization. This diagram more accurately reflects the
priorities and efforts of ECP ST given the new ECP project scope and the demands that we
foresee. 11

8 ECP ST Leadership Team as of November 2017. 12
9 The 54 ECP ST Projects contribute to 89 unique products. ECP ST products are delivered to users

via many mechanisms. Provides experience we can leverage across projects. Building via Spack is

required for participating in ECP ST releases: 48% of products already support Spack. 24% have

Spack support in progress. Use of Spack and the ECP ST SDKs will greatly improve builds from

source. 81 of 89 packages support users via source builds. 25
10 ECP ST staff are involved in a variety of official and de facto standards committees. Involvement

in standards efforts is essential to assuring the sustainability of our products and to assure
that emerging Exascale requirements are addressed by these standards. 30

11 New Legion features such as dynamic tracing significantly improves strong scaling
in unstructured mesh computations. 35

12 Work by ROSE team shows performance gap analysis for RAJA with different
compilers. 37

13 Kokkos Execution and Memory Abstractions . 38
14 DARMA software stack model showing application-level code implemented with asynchronous

programming model (DARMA header library). Application-level semantics are translated into
a task graph specification via metaprogramming in the translation layer. Glue code maps task
graph specification to individual runtime libraries. Current backend implementations include
std::threads, Charm++, MPI + OpenMP, and HPX. 41

15 Improved performance of strided get in the 5.7 release series. 43
16 The details of MPICH milestones completed in FY18Q1 and FY18Q2 47

Exascale Computing Project (ECP) x ECP-RPT-ST-0001-2018

17 The Legion task graph for a single time step on a single node. The S3D configuration in
this example is simulating n-dodecane chemistry reactions in addition to the direct numerical
simulation of the turbulent flow. 49

18 PaRSEC architecture . 50
19 PaRSEC architecture . 51
20 Comparison of put (left) and get (right) RMA performance in a multi-threaded context for

Open MPI. Recent OMPI-X contributions are reflected in version 4.0.0a1 (top group of lines),
in comparison with v2.1.3. 55

21 Non-linear power-performance model in use for MG.C during configuration exploration phase
for the runtime system . 57

22 SOLLVE thrust area updates . 59
23 Argobots execution model . 61
24 Pictorial representation of development of BOLT . 63
25 Performance of the symPACK solver using UPC++ V1.0 65
26 Weak Scaling of 64-bit Unsigned Integer Atomic Hot-Spot Test on ALCF’s Theta 67
27 This graph shows the performance of Qthreads and OpenMP paired with the FinePoints library

for multithreaded MPI. The x-axis varies the buffer sizes transferred in each experiment in
the series, and the y-axis shows the network bandwidth achieved. The similar performance of
Qthreads and OpenMP justifies use of the former as a suitable proxy for the latter, with the
advantage of flexibility for rapid prototyping of new runtime system techniques. 69

28 Interface for complex memory that is abstract, portable, extensible to future hardware; including
a mechanism-based low-level interface that reins in heterogeneity and an intent-based high-level
interface that makes reasonable decisions for applications . 70

29 Approach to processing user application code with multiple tools to support optimization and
correctness checking. 80

30 Average power measurements (Watts on y axis) of Jacobi algorithm on a 12,800 x 12,800 grid
for different power caps. (A) FLAT mode: data allocated to DDR4; (B) FLAT mode: data
allocated to MCDRAM . 83

31 Y-TUNE Solution Approach. 84
32 The December 2017 HPCToolkit release supports measuring and attributing performance

metrics of kernel activity on behalf of an application. HPCToolkit now measures and attributes
the performance of computation offloaded to GPUs using LLNL’s RAJA template-based
programming model. 87

33 TAU’s ParaProf profile browser shows the parallel performance of the AORSA2D application. 90
34 K-mer distributed hash table implementations in UPC and PapyrusKV. 93
35 Meraculous performance comparison between PapyrusKV (PKV) and UPC on Cori. 93
36 The December 2017 release of the xSDK contains many of the most popular math and scientific

libraries used in HPC. The above diagram shows the interoperability of the libraries and a
multiphysics or multiscale application. 98

37 Performance of PFMG-PCG on Ray at LLNL, using Power 8 CPUs and Pascal GPUs 100
38 FleCSI unstructured mesh example from the FleCSALE application. 102
39 AMR implementation in MFEM allows many applications to benefit from non-conforming

adaptivity, without significant changes in their codes. 103
40 New structure of SUNDIALS showing options for the new SUNLINEARSOLVER and SUN-

MATRIX classes. 108
41 Performance at scale on Theta at Argonne for a 2-D reaction diffusion example on a 16384x16384

mesh using a multigrid preconditioner with 6 levels. 110
42 STRUMPACK scaling of three phases. 112
43 SuperLU triangular solve scaling with 4 matrices. 112
44 The proposed Inversion-of-Control approach allowing Fortran applications to define operators

on Fortran side while still using ForTrilinos types. 114
45 SLATE in the ECP software stack. 115
46 Accelerated performance using SLATE compared to multi-core performance using ScaLAPACK.116

Exascale Computing Project (ECP) xi ECP-RPT-ST-0001-2018

47 Runtime of the ILU preconditioner generation on an NVIDIA V100 GPU using the novel
ParILU algorithm realized in the PEEKS project and NVIDIA’s cuBLAS routine, respectively. 119

48 DTK tree search, OpenMP and Summitdev GPU speedups 121
49 Tasmanian speedup on Titan node using cuBLAS . 121
50 Screen capture of both the Cinema:Newsfeed viewer (left and Cinema:Explorer viewer, showing

different views of data from the workflow described above. On the left, the Cinema:Newsfeed
viewer shows a graph resulting from the change detection algorithm, and snapshots from the
timesteps at the inflection points for the change detection algorithm. This viewer shows a
compact ‘newsfeed’ view of the end-to-end analysis. Clicking on the images in this viewer
takes the scientist to a more detailed view of the overall set of features captured during the
simulation. Because these viewers are implemented in a browser, it is easy to link different
viewers together for new tasks and workflows. 125

51 (a) FAODEL software stack and (b) a workflow example. 129
52 Examples of an in situ visualization of a Nalu simulation on 2560 processes of airflow over a

wind turbine airfoil. At left: a cross-sectional slice through the airfoil along the direction of
flow colored by Q criterion. At right: detail at the leading edge of the wind turbine airfoil. . 131

53 VeloC: Very Low Overhead Checkpoint-Restart . 133
54 Illustration of data prediction in SZ and visual quality of decompressed data for ExaSky-NYX

VX field . 135
55 Performance evaluation of SZ with OpenMP and PnetCDF 135
56 UnifyCR Overview. Users will be able to give commands in their batch scripts to launch

UnifyCR within their allocation. UnifyCR will work with POSIX I/O, common I/O libraries,
and VeloC. Once file operations are transparently intercepted by UnifyCR, they will be handled
with specialized optimizations to ensure high performance. 136

57 UnifyCR Design. The UnifyCR instance will consist of a dynamic library and a UnifyCR
daemon that runs on each compute node in the job. The library will intercept I/O calls to the
UnifyCR mount point from applications, I/O libraries, or VeloC and communicate them to
the UnifyCR daemon that will handle the I/O operation. 137

58 An overview of Virtual Object Layer (VOL) . 139
59 An example of using ADIOS to support ECP science. This sketch represents the demonstration

at the February 2018 ECP Meeting, which featured WDM Fusion, CODAR, ADIOS, and
other joint ECP activities. Note that all of the green arrows in the figure represent data
communication or storage handled by the ADIOS infrastructure. 141

60 The new PnetCDF dispatch layer provides flexibility to target different back-end formats and
devices under the PnetCDF API used by many existing applications. 143

61 240:1 zfp compressed density field. 145
62 ALPINE’s strategy for delivering and developing software. We are making use of existing

software (ParaView, VisIt), but making sure all new development is shared in all of our tools.
The dotted lines represent future work, specifically that the ASCENT API will work with
ParaView and VisIt. 147

63 In situ visualizations taken from WarpX using VisIt. At left, equally spaced isovalues in an
ion accelerator simulation. At right, our method chooses isovalues using topological analysis to
more fully represent complex behavior in the data. 147

64 Examples of recent progress in VTK-m include (from left to right) multiblock data structures,
gradient estimation, and mapping of fields to colors. 149

65 The above diagram shows a snippet of the Spack dependency tree including six xSDK member
packages. While multiple xSDK member packages depend on OpenMPI, which is an ECP ST
software product, OpenMPI is not part of the xSDK . 152

66 Sonar deployment (left) and Spack binary packaging (right). 156
67 Spack concretizer design changes. 156
68 Global and node-local components of the Argo software stack and interactions between them

and the surrounding HPC system components. 160
69 Flang performance is benchmarked against other Fortran compilers. The above diagram shows

the relative performance of Flang against PGI Fortran and GNU gfortran 162

Exascale Computing Project (ECP) xii ECP-RPT-ST-0001-2018

LIST OF TABLES

1 ECP ST Work Breakdown Structure (WBS), Technical Area, and description of scope. 2
2 Software Development Kits (SDKs) provide an aggregation of software products that have

complementary or similar attributes. ECP ST uses SDKs to better assure product interoper-
ability and compatibility. SDKs are also essential aggregation points for coordinated planning
and testing. SDKs are an integral element of ECP ST [2] . 5

3 ECP ST technical areas were reduced from 8 to 5 in November 2017. This figure shows how
areas were remapped and merged. In addition, the ECP ST Director and Deputy Director
changed from Rajeev Thakur (who continues as the Programming Models & Runtimes lead)
and Pat McCormick to Mike Heroux and Jonathan Carter, respectively. 10

4 Programming Models and Runtimes Products (18 total). 26
5 Development Tools Products (19 total). 26
6 Mathematical Libraries Products (16 total). 27
7 Visualization and Data Products (25 total). 27
8 Software Delivery and Ecosystems Products (11 total). 28
9 External products to which ECP ST activities contribute. Participation in requirements,

analysis, design and prototyping activities for third-party products is some of the most effective
software work we can do. 29

Exascale Computing Project (ECP) xiii ECP-RPT-ST-0001-2018

1. INTRODUCTION

The Exascale Computing Project Software Technology (ECP ST) focus area represents the key bridge between
Exascale systems and the scientists developing applications that will run on those platforms. ECP offers
a unique opportunity to build a coherent set of software (often referred to as the “software stack”) that
will allow application developers to maximize their ability to write highly parallel applications, targeting
multiple Exascale architectures with runtime environments that will provide high performance and resilience.
But applications are only useful if they can provide scientific insight, and the unprecedented data produced
by these applications require a complete analysis workflow that includes new technology to scalably collect,
reduce, organize, curate, and analyze the data into actionable decisions. This requires approaching scientific
computing in a holistic manner, encompassing the entire user workflow—from conception of a problem, setting
up the problem with validated inputs, performing high-fidelity simulations, to the application of uncertainty
quantification to the final analysis. The software stack plan defined here aims to address all of these needs by
extending current technologies to Exascale where possible, by performing the research required to conceive
of new approaches necessary to address unique problems where current approaches will not suffice, and by
deploying high-quality and robust software products on the platforms developed in the Exascale systems
project. The ECP ST portfolio has established a set of interdependent projects that will allow for the research,
development, and deployment of a comprehensive software stack, as summarized in Table 1.

ECP ST is developing a software stack to meet the needs of a broad set of Exascale applications. The
current software portfolio covers many projects spanning the areas of programming models and runtime,
mathematical libraries and frameworks, tools, data management, analysis and visualization, and software
delivery. The ECP software stack was developed bottom up based on application requirements and the
existing software stack at DOE HPC Facilities. The portfolio comprises projects selected in two different
ways:

1. Thirty five projects funded by the DOE Office of Science (ASCR) that were selected in October 2016
via an RFI and RFP process, considering prioritized requirements.

2. A similar number of ongoing DOE NNSA/ASC funded projects that are part of the Advanced Technology
Development and Mitigation (ATDM) program, which is in its fourth year (started in FY14). These
projects are focused on longer term research to address the shift in computing technology to extreme,
heterogeneous architectures and to advance the capabilities of NNSA/ASC simulation codes.

Since the initial selection process, ECP ST has reorganized efforts as described in Section 1.3.

1.1 BACKGROUND

Historically, the software used on supercomputers has come from three sources: computer system vendors,
DOE laboratories, and academia. Traditionally, vendors have supplied system software: operating system,
compilers, runtime, and system-management software. The basic system software is typically augmented by
software developed by the DOE HPC facilities to fill gaps or to improve management of the systems. An
observation is that it is common for system software to break or not perform well when there is a jump in the
scale of the system.

Mathematical libraries and tools for supercomputers have traditionally been developed at DOE laboratories
and universities and ported to the new computer architectures when they are deployed. These math libraries
and tools have been remarkably robust and have supplied some of the most impactful improvements in
application performance and productivity. The challenges have been the constant adapting and tuning to
rapidly changing architectures.

Programming paradigms and the associated programming environments that include compilers, debuggers,
message passing, and associated runtimes have traditionally been developed by vendors, DOE laboratories,
and universities. The same can be said for file system and storage software. An observation is that the vendor
is ultimately responsible for providing a programming environment and file system with the supercomputer,
but there is often a struggle to get the vendors to support software developed by others or to invest in new
ideas that have few or no users yet. Another observation is that file-system software plays a key role in overall
system resilience, and the difficulty of making the file-system software resilient has grown nonlinearly with
the scale and complexity of the supercomputers.

Exascale Computing Project (ECP) 1 ECP-RPT-ST-0001-2018

WBS 2.3.1 Programming
Models and
Runtimes

Cross-platform, production-ready programming infrastructure to
support development and scaling of mission-critical software at
both the node and full-system levels.

WBS 2.3.2 Development
Tools

A suite of tools and supporting unified infrastructure aimed at
improving developer productivity across the software stack. This
scope includes debuggers, profilers, and the supporting compiler
infrastructure.

WBS 2.3.3 Mathematical
Libraries

Mathematical libraries and frameworks that (i) interoperate with
the ECP software stack; (ii) are incorporated into ECP applica-
tions; and (iii) provide scalable, resilient numerical algorithms
that facilitate efficient simulations on Exascale computers.

WBS 2.3.4 Data and
Visualization

Production infrastructure necessary to manage, share, and facili-
tate analysis and visualization of data in support of mission-critical
codes. Data analytics and visualization software that supports sci-
entific discovery and understanding, despite changes in hardware
architecture and the size, scale, and complexity of simulation and
performance data produced by Exascale platforms.

WBS 2.3.5 Software
Ecosystem and

Delivery

A unified set of robust, lower-level software libraries as well as
end-user tools that help address the complexities of developing
higher-level software and leveraging and utilizing Exascale system
components and resources. Programming tools, libraries, and
system support for incorporating resilience into application codes
that enables them to run successfully and efficiently in the presence
of faults experienced on the system. Oversight of development
across software technology to ensure the teams are communicating
and coordinating, other focus areas are included in the execution,
interfaces are agreed upon and standardized where necessary, and
interdependencies across projects are effectively managed.

Table 1: ECP ST Work Breakdown Structure (WBS), Technical Area, and
description of scope.

Exascale Computing Project (ECP) 2 ECP-RPT-ST-0001-2018

Figure 1: The ECP Work Breakdown Structure through Level 3 (L3).

In addition to the lessons learned from the traditional approaches, Exascale computers pose unique
software challenges including the following.

• Extreme parallelism: Experience has shown that software breaks at each shift in scale. Exascale
systems are predicted to have a billion-way concurrency via a combination of tasks, threads and
vectorization, and more than one hundred thousand nodes. Because clock speeds have essentially
stalled, the 1000-fold increase in potential performance going from Petascale to Exascale is entirely
from concurrency improvements.

• Data movement in a deep memory hierarchy: Data movement has been identified as a key
impediment to performance and power consumption. Exascale system designs are increasing the types
and layers of memory, which further challenges the software to increase data locality and reuse, while
reducing data movement.

• Resilience: As hardware resilience decreases due to the number of components and reduced voltage,
software resilience must be developed to take up the slack and allow the Exascale system to be adaptable
to component failures without the entire system crashing. Initial concerns about resilience at the start
of Exascale efforts have diminished, and the availability of non-volatile memory should dramatically
improve checkpoint/restart performance. Even so, we need to keep a focus on this issue.

• Power consumption: Exascale systems have been given an aggressive power consumption goal of
20-30 MW, not much more than the power consumed by the largest systems of today. Meeting this goal
will require the development of power monitoring and management software that does not exist today.

In addition to the software challenges imposed by the scale of Exascale computers, the following additional
requirements push ECP away from the historical approaches for getting the needed software for DOE
supercomputers.

• 2021 acceleration: ECP has a goal of accelerating the development of the U.S. Exascale systems
and enabling the first deployment by 2021. This means that the software needs to be ready sooner,
and the approach of just waiting until it is ready will not work. A concerted plan that accelerates the
development of the highest priority and most impactful software is needed.

• Productivity: Traditional supercomputer software requires a great deal of expertise to use. ECP
has a goal of making Exascale computing accessible to a wider science community than previous

Exascale Computing Project (ECP) 3 ECP-RPT-ST-0001-2018

supercomputers have been. This requires the development of software that improves productivity and
ease of use.

• Diversity: There is a strong push to make software run across diverse Exascale systems. Traditionally,
there has been a focus on just one new supercomputer every couple of years. ECP has a goal of enabling
at least two diverse architectures, and the ECP-developed software needs to be able to run efficiently on
all of them. Some code divergence is inevitable, but careful software design, and the use of performance
portability layers can minimize the amount of code targeted at a specific platform.

• Analytics and machine learning: Future DOE supercomputers will need to solve emerging data
science and machine learning problems in addition to the traditional modeling and simulation applications.
This will require the development of scalable, parallel analytics and machine learning software that
does not exist today.

The next section describes the approach employed by ECP ST to address the Exascale challenges.

1.2 ECP SOFTWARE TECHNOLOGY APPROACH

ECP is taking an approach of codesign across all its principal technical areas: applications development (AD),
software technology (ST), and hardware & integration (HI). For ECP ST, this means its requirements are
based on input from other areas, and there is a tight integration of the software products both within the
software stack as well as with applications and the evolving hardware.

The portfolio of projects in ECP ST is intended to address the Exascale challenges and requirements
described above. We note that ECP is not developing the entire software stack for an Exascale system. For
example, we expect vendors to provide the core software that comes with the system (in many cases, by
leveraging ECP and other open-source efforts). Examples of vendor-provided software include operating
system, file system, compilers (for C, C++, Fortran, etc.), basic math libraries, system monitoring tools,
scheduler, debuggers, vendor’s performance tools, MPI (based on ECP-funded projects), OpenMP (with
features from ECP-funded project), and data-centric stack components. ECP develops other, mostly higher-
level software that is needed by applications and is not vendor specific. ECP-funded software activities
are concerned with extreme scalability, exposing additional parallelism, unique requirements of Exascale
hardware, and performance-critical components. Other software that aids in developer productivity is needed
and may come from third-party open-source efforts (e.g., gdb, Valgrind).

The ST portfolio includes both ASCR and NNSA ATDM funded efforts. The MOU established between
DOE-SC and NNSA has formalized this effort. Whenever possible, ASCR and ATDM efforts are treated
uniformly in ECP ST planning and assessment activities.

ST is also planning to increase integration within the ST portfolio through increased use of software
components and application composition vs. monolithic application design. An important transition that
ECP can accelerate is the increased development and delivery of reusable scientific software components
and libraries. While math and scientific libraries have long been a successful element of the scientific
software community, their use can be expanded to include other algorithms and software capabilities, so that
applications can be considered more an aggregate composition of reusable components than a monolithic
code that uses libraries tangentially.

To accelerate this transition, we need a greater commitment on the part of software component developers
to provide reliable and portable software that users can consider to be part of the software ecosystem in much
the same way users depend on MPI and compilers. At the same time, we must expect application developers
to participate as clients and users of reusable components, using capabilities from components, transitioning
away from (or keeping as a backup option) their own custom capabilities.

1.2.1 Software Development Kits

One opportunity for a large software ecosystem project such as ECP ST is to foster increased collaboration,
integration and interoperability among its funded efforts. Part of ECP ST design is the creation of software
development kits (SDKs). SDKs are collections of related software products (called packages) where
coordination across package teams will improve usability and practices and foster community growth among
teams that develop similar and complementary capabilities. SDKs have the following attributes:

Exascale Computing Project (ECP) 4 ECP-RPT-ST-0001-2018

1. Domain scope: Each SDK will be composed of packages whose capabilities are within a natural
functionality domain. Packages within an SDK provide similar capabilities that can enable
leveraging of common requirements, design, testing and similar activities. Packages may have a
tight complementary such that ready composability is valuable to the user.

2. Interaction models: How packages within an SDK interact with each other. Interactions include
common data infrastructure, or seamless integration of other data infrastructures; access to
capabilities from one package for use in another.

3. Community policies: Expectations for how package teams will conduct activities, the services
they provide, software standards they follow, and other practices that can be commonly expected
from a package in the SDK.

4. Meta-build system: Robust tools and processes to build (from source), install and test the SDK
with compatible versions of each package. This system sits on top of the existing build, install and
test capabilities for each package.

5. Coordinated plans: Development plans for each package will include efforts to improve SDK
capabilities and lead to better integration and interoperability.

6. Community outreach: Efforts to reach out to the user and client communities will include
explicit focus on SDK as product suite.

Table 2: Software Development Kits (SDKs) provide an aggregation of software
products that have complementary or similar attributes. ECP ST uses SDKs to
better assure product interoperability and compatibility. SDKs are also essential
aggregation points for coordinated planning and testing. SDKs are an integral
element of ECP ST [2]

.

Exascale Computing Project (ECP) 5 ECP-RPT-ST-0001-2018

Figure 2: The xSDK is the first SDK for ECP ST, in the Mathematical Libraries
technical area 1. The xSDK provides the collaboration environment for improving
build, install and testing capabilities for member packages such as hypre, PETSc,
SuperLU and Trilinos (and other products with green background). Domain
components (see orange ovals) are also an important category of the ecosystem,
providing leveraged investments for common components in a specific scientific
software domain. xSDK capabilities are essential for supporting the multi-physics
and multi-scale application requirement that lead to combined use of xSDK
libraries. Furthermore, the availability of advanced software platforms such as
GitHub, Confluence, JIRA and others enable the level of collaboration needed to
create an SDK from independently developed packages.

ECP ST SDKs As part of the delivery of ECP ST capabilities, we will establish and grow a collection
of SDKs. The new layer of aggregation that SDKs represent are important for improving all aspects of
product development and delivery. The communities that will emerge from SDK efforts will lead to better
collaboration and higher quality products. Established community policies will provide a means to grow
SDKs beyond ECP to include any relevant external effort. The meta-build systems (based on Spack) will
play an important role in managing the complexity of building the ECP ST software stack, by providing a
new layer where versioning, consistency and build options management can be addressed at a mid-scope,
below the global build of ECP ST products. Each ECP ST L3 (five of them) has funds for an SDK project
from which we will identify and establish at least one SDK effort. Fortunately, we will be able to leverage an
existing SDK in the Math Libraries sub-element to inform our broader efforts. This SDK, called the xSDK,
has been in existence for several years and has proven the value of an SDK approach in its domain (Figure 2).

The xSDK Initially funded by the DOE Office of Advanced Scientific Computing Research and the office
of Biological and Environmental Research as part of the IDEAS Project [3], the xSDK is a collection of
independent math library packages, initially the popular libraries hypre, PETSc, SuperLU and Trilinos. The
xSDK was established in recognition that collaboration across independent library development efforts could
have a tremendous positive impact on the math libraries capabilities provided to users, and the productivity
of library developers and sustainability of library software. Figure 2 illustrates the scope and interaction of
xSDK packages and Figure 3 lists the community policies that govern xSDK activities and set expectations
for future xSDK members. While we recognize that xSDK experiences cannot be blindly applied to creation
of new SDKs in ECP, the xSDK does provide a concrete, working example to guide ECP ST SDK efforts
going forward.

1.2.2 ECP ST Software Delivery

An essential activity for, and the ultimate purpose of, ECP ST is the delivery of a software stack that enables
productive and sustainable Exascale computing capabilities for target ECP applications and platforms,

Exascale Computing Project (ECP) 6 ECP-RPT-ST-0001-2018

Figure 3: xSDK Community Policies emerged from challenging and
passionate discussions about essential values of the math libraries com-
munity. Once established, these community policies represent a living statement
of what it means to be part of an SDK, and are used as the criteria for welcoming
future members.

and the broader high-performance computing community. The ECP ST Software Ecosystem and Delivery
sub-element (WBS 2.3.5) and the SDKs in each other sub-element provide the means by which ECP ST will
deliver its capabilities.

ECP ST Delivery and HI Deployment Providing the ECP ST software stack to ECP applications
requires coordination between ECP ST and ECP HI. The focus areas have a complementary arrangement
where ECP ST delivers its products and ECP HI deploys them. Specifically:

• ST delivers software. ECP ST products are delivered directly to application teams, to vendors and to
facilities. ECP ST designs and implements products to run on DOE computing facilities platforms and
make products available as source code via GitHub, GitLab or some other accessible repository.

• HI facilitates efforts to deploy ST (and other) software on Facilities platforms by installing it where
users expect to find it. This could be in /usr/local/bin or similar directory, or available via “module
load”.

Separating the concerns of delivery and deployment is essential because these activities require different
skill sets. Furthermore, ECP ST delivers its capabilities to an audience that is beyond the scope of specific
Facilities’ platforms. This broad scope is essential for the sustainability of ECP ST products, expanding the
user and developer communities needed for vitality. In addition, ECP HI, the computer system vendors and
other parties provide deployable software outside the scope of ECP ST, therefore having the critical mass of
skills to deploy the entire software stack.

ECP ST Delivery Strategy ECP ST delivers it software products as source code, primarily in repositories
found on GitHub, Gitlab installations or similar platforms. Clients such as ECP HI, OpenHPC and application
developers with direct repository access then take the source and build, install and test our software. The
delivery strategy is outlined in Figure 4.

Users access ECP ST products using these basic mechanisms (see Figure 9 for deliverable statistics):

• Build from source code: The vast majority of ECP ST products reach at least some of their user
base via direct source code download from the product repository. In some cases, the user will download

Exascale Computing Project (ECP) 7 ECP-RPT-ST-0001-2018

a single compressed file containing product source, then expand the file to expose the collection of
source and build files. Increasingly, users will fork a new copy of an online repository. After obtaining
the source, the user executes a configuration process that detects local compilers and libraries and then
builds the product. This kind of access can represent a barrier for some users, since the user needs to
build the product and can encounter a variety of challenges in that process, such as an incompatible
compiler or a missing third-party library that must first be installed. However, building from source
can be a preferred approach for users who want control over compiler settings, or want to adapt how
the product is used, for example, turning on or off optional features, or creating adaptations that
extend product capabilities. For example, large library frameworks such as PETSc and Trilinos have
many tunable features that can benefit from the user building from source code. Furthermore, these
frameworks support user-defined functional extensions that are easier to support when the user builds
the product from source. ECP ST is leveraging and contributing to the development of Spack [4]. Via
meta-data stored in a Spack package defined for each product, Spack leverages a product’s native build
environment, along with knowledge about its dependencies, to build the product and dependencies
from source. Spack plays a central role in ECP ST software development and delivery processes by
supporting turnkey builds of the ECP ST software stack for the purposes of continuous integration
testing, installation and seamless multi-product builds.

• DOE computing facilities: Each DOE computing facility (ALCF, OLCF, NERSC, LLNL and ACES
[LANL/SNL]) provides pre-built versions of 17 to 20 ECP ST products (although the exact mix of
products varies somewhat at each site). Many of these products are what users would consider to
be part of the core system capabilities, including compilers, e.g., Flang (Section 4.5.8) and LLVM
(Section 4.1.14), and parallel programming environments such as MPICH (Section 4.1.8), OpenMPI
(Section 4.1.12) and OpenMP (Section 4.1.16). Development tools such as PAPI (Section 4.2.6) and TAU
(Section 4.2.10) are often part of this suite, if not already included in the vendor stack. Math and data
libraries such as PETSc (Section 4.3.7), Trilinos (Section 4.3.5), HDF5 (Section 4.4.9) and others are
also available in some facilities software installations. We anticipate and hope for increased collaboration
with facilities via the ECP Hardware & Integration (HI) Focus Area. We are also encouraged by
multi-lab efforts such as the Tri-Lab Operating System Stack (TOSS) [5] that are focused on improving
uniformity of software stacks across facilities.

• Vendor stacks: Computer system vendors leverage DOE investments in compilers, tools and libraries.
Of particular note are the wide use of MPICH(Section 4.1.8) as software base for most HPC vendor
MPI implementations and the requirements, analysis, design and prototyping that ECP ST teams
provide. Section 3.3 describes some of these efforts.

• Binary distributions: Approximately 10 ECP ST products are available via binary distributions
such as common Linux distributions, in particular via OpenHPC[6]. ECP ST intends to foster growth
of availability via binary distributions as an important way to increase the size of the user community
and improve product sustainability via this broader user base.

1.3 ECP ST PROJECT RESTRUCTURING

The initial organization of ECP ST was based on discussions that occurred over several years of Exascale
planning within DOE, especially the DOE Office of Advanced Scientific Computing Research (ASCR). Figure 6
shows the conceptual diagram of this first phase. The 66 ECP ST projects were mapped into 8 technical
areas, in some cases arbitrating where a project should go based on its primary type of work, even if other
work was present in the project. In November 2017, ECP ST was reorganized into 5 technical areas, primarily
through merging a few smaller areas, and the number of projects was reduced to 56 (presently 55 due to
further merging in SW Ecosystem & Delivery). Figure

1.4 NEW PROJECT EFFORTS

ECP ST has initiated four newly-funded efforts as a result of findings in our September 2017 Gap Analysis [1].
We anticipate several additional efforts in the coming months in order to mitigate some of the higher risks we

Exascale Computing Project (ECP) 8 ECP-RPT-ST-0001-2018

Figure 4: The ECP ST software stack is delivered to the user commu-
nity through several channels. Key channels are via source code, increasing
using SDKs, direct to Facilities in collaboration with ECP HI, via binary distri-
butions, in particular the OpenHPC project and via HPC vendors. The SDK
leadership team includes ECP ST team members with decades of experience
delivering scientific software products.

• Phase 1: 66 total projects

– 35 projects funded by the DOE Office of Science that were selected in late 2016 via an RFI
and RFP process, considering prioritized requirements of applications and DOE facilities.
These projects started work in January–March 2017 depending on when the contracts were
awarded.

– 31 ongoing DOE NNSA funded projects that are part of the Advanced Technology Development
and Mitigation (ATDM) program. The ATDM program started in FY14. These projects
are focused on longer term research to address the shift in computing technology to extreme,
heterogeneous architectures and to advance the capabilities of NNSA simulation codes.

• Phase 2: 56 total projects (now 55 after further merging in 2.3.5)

– 41 ASCR-funded projects. Added 2 SW Ecosystem & Delivery projects and 4 SDK projects.

– 15 ATDM projects: Combined the previous 31 ATDM projects into one project per technical
area per lab. ATDM projects are generally more vertically integrated and would not perfectly
mapped to any proposed ECP ST technical structure. Minimizing the number of ATDM
projects within the ECP WBS structure reduces complexity of ATDM to ECP coordination
and gives ATDM flexibility in revising its porfolio without disruption to the ECP-ATDM
mapping.

Figure 5: Project remapping summary from Phase 1 (through November 2017)
to Phase 2 (After November 2017)

Exascale Computing Project (ECP) 9 ECP-RPT-ST-0001-2018

WBS Role/Area Leader Transition

1.3
ECP ST
Director

Rajeev Thakur

Renumbered to 2.3. Thakur left director
role, continues as lead of 2.3.1
Programming Models & Runtimes. Mike
Heroux new director.

1.3
ECP ST Deputy
Director

Pat McCormick
McCormick left deputy role, continued as
PI of 2.3.1.08 Legion project. Jonathan
Carter new deputy director.

1.3.1
Programming
Models &
Runtimes

Rajeev Thakur
Renumbered to 2.3.1, renamed to
Programming Models & Runtimes,
otherwise unchanged.

1.3.2 Tools Jeff Vetter
Renumbered to 2.3.2, renamed to
Development Tools, otherwise unchanged.

1.3.3
Math/Scientific
Libs

Mike Heroux
New leader Lois Curfman McInnes,
renamed Mathematical Libraries, new
number 2.3.3.

1.3.4
Data
Management &
Workflows

Rob Ross
Combined with 1.3.5 to create 2.3.4. Jim
Ahrens leader.

1.3.5
Data Analytics
& Visualization

Jim Ahrens
Combined with 1.3.4 to create 2.3.4. Jim
Ahrens leader.

1.3.6 System Software Martin Schulz
Combined with 1.3.7 and 1.3.8 into 2.3.5.
Rob Neely leader.

1.3.7 Resilience Al Geist
Combined with 1.3.6 and 1.3.8 into 2.3.5.
Rob Neely leader.

1.3.8 Integration Rob Neely
Combined with 1.3.6 and 1.3.7 into 2.3.5.
Rob Neely leader.

Table 3: ECP ST technical areas were reduced from 8 to 5 in November 2017.
This figure shows how areas were remapped and merged. In addition, the ECP
ST Director and Deputy Director changed from Rajeev Thakur (who continues as
the Programming Models & Runtimes lead) and Pat McCormick to Mike Heroux
and Jonathan Carter, respectively.

Exascale Computing Project (ECP) 10 ECP-RPT-ST-0001-2018

Figure 6: ECP ST before November 2017 reorganization. This conceptually
layout emerged from several years of Exascale planning, conducted primarily
within the DOE Office of Advanced Scientific Computing Research (ASCR). After
a significant restructuring of ECP that removed much of the facilities activities
and reduced the project timeline from 10 to seven years, and a growing awareness
of what risks had diminished, this diagram no longer represented ECP ST efforts
accurately.

Figure 7: ECP ST after November 2017 reorganization. This diagram more
accurately reflects the priorities and efforts of ECP ST given the new ECP project
scope and the demands that we foresee.

Exascale Computing Project (ECP) 11 ECP-RPT-ST-0001-2018

Figure 8: ECP ST Leadership Team as of November 2017.

have identified in programming environments and data management. We will report this second phase of
additions in the next version of this report.

1.4.1 FFTs

ECP ST has initiated two new efforts in Fast Fourier Transforms (FFTs). FFTs provide an essential
mathematical tool to many application areas. From the very beginning of HPC, vendors have provided
optimized FFT libraries for their users. The advent of FFTW [7], a tunable high-performance library with a
well-designed interface, enabled a de facto standardization of FFT interfaces, and an effective source base for
vendor libraries, which adapted FFTW source for their platforms.

There is some concern in the community that FFTW is no longer actively developed, nor well prepared
for emerging platforms. Furthermore, FFTW’s strong copylefting license (which forces its users to make
their own software open source in the same way) has always been a challenge to users. While vendors are
still committed to providing optimized FFT libraries, whether or not FFTW is available, we believe it is
prudent to explore a new software stack and have funded a short-term project to explore this possibility. The
new library will also explore problem formulations that could significantly reduce the computational cost of
FFTs. This new effort, called FFTX, will be led by Lawrence Berkeley National Lab, under the existing
math libraries project (Section 4.3.8).

A second FFT project will address a consensus opportunity to provide a sustainable 3D FFT library built
from established but ad hoc software tools that have traditionally been part of application codes, but not
extracted as independent, supported libraries. These 3D FFTs rely on third-party 1D FFTs, either from
FFTW or from vendor libraries.

The goal of this second project, FFT-ECP, led by the University of Tennessee and integrated into one of
its existing projects (Section 4.3.10) is to:

• Collect existing FFT capabilities recently made available from ECP application teams (LAMMPS/fftMPI
and HACC/SWFFT).

• Assess gaps and make available as a sustainable math library.

• Explore opportunities to build 3D FFT libraries on vendor 1D and 2D kernels, especially leveraging
on-node concurrency from 2D and batched 1D formulations.

• Focus on capabilities for Exascale platforms.

Exascale Computing Project (ECP) 12 ECP-RPT-ST-0001-2018

• Emphasize leverage of vendor capabilities and addressing vendor deficiencies over creation of new and
independent software stack.

This effort, while not addressing the concerns about FFTW directly, is essential to providing a new and
sustainable FFT software stack that leverages the large investment by the broader HPC community in FFT
software. The payoff from this effort is almost guaranteed. Also, should the FFTX project also go forward,
it will provide an FFTW-compatible interface that would allow FFT-ECP to use FFTX as one option, in
addition to external FFT libraries.

1.4.2 LLNL Math Libraries

When ECP ST started, some important capabilities were not part of the original portfolio, even though their
engagement is essential for ECP application success. This is true of the LLNL math library hypre [8]. This
library is widely used to provide scalable multigrid preconditioners across several ECP applications. Funding
to support adaptation of hypre in preparation for Exascale platforms at science lab facilities, e.g., Argonne,
and for ECP science applications was not part of the original ECP ST portfolio. We have added funding
for this effort, starting in June 2018. In addition, we provided new funding for another LLNL math library,
MFEM [9], so that the MFEM team can participate in SDK efforts for math libraries.

Exascale Computing Project (ECP) 13 ECP-RPT-ST-0001-2018

2. ECP ST TECHNICAL AREAS

2.1 PROGRAMMING MODELS & RUNTIMES

End State: A cross-platform, production-ready programming environment that enables and accelerates the
development of mission-critical software at both the node and full-system levels.

2.1.1 Scope and Requirements

A programming model provides the abstract design upon which developers express and coordinate the efficient
parallel execution of their program. A particular model is implemented as a developer-facing interface and a
supporting set of runtime layers. To successfully address the challenges of exascale computing, these software
capabilities must address the challenges of programming at both the node- and full-system levels. These
two targets must be coupled to support multiple complexities expected with exascale systems (e.g., locality
for deep memory hierarchies, affinity for threads of execution, load balancing) and also provide a set of
mechanisms for performance portability across the range of potential and final system designs. Additionally,
there must be mechanisms for the interoperability and composition of multiple implementations (e.g., one
at the system level and one at the node level). This must include abilities such as resource sharing for
workloads that include coupled applications, supporting libraries and frameworks, and capabilities such as in
situ analysis and visualization.

Given the ECP’s timeline, the development of new programming languages and their supporting infras-
tructure is infeasible. We do, however, recognize that the augmentation or extension of the features of existing
and widely used languages (e.g., C/C++ and Fortran) could provide solutions for simplifying certain software
development activities.

2.1.2 Assumptions and Feasibility

The intent of the PMR L3 is to provide a set of programming abstractions and their supporting implementations
that allow programmers to select from options that meet demands for expressiveness, performance, productivity,
compatibility, and portability. It is important to note that, while these goals are obviously desirable, they
must be balanced with an additional awareness that today’s methods and techniques may require changes in
both the application and the overall programming environment and within the supporting software stack.

2.1.3 Objectives

PMR provides the software infrastructure necessary to enable and accelerate the development of HPC
applications that perform well and are correct and robust, while reducing the cost both for initial development
and ongoing porting and maintenance. PMR activities need to reflect the requirements of increasingly complex
application scenarios, usage models, and workflows, while at the same time addressing the hardware challenges
of increased levels of concurrency, data locality, power, and resilience. The software environment will support
programming at multiple levels of abstraction that includes both mainstream as well as alternative approaches
if feasible in ECP’s timeframe.

Both of these approaches must provide a portability path such that a single application code can run
well on multiple types of systems, or multiple generations of systems, with minimal changes. The layers of
the system and programming environment implementation will therefore aim to hide the differences through
compilers, runtime systems, messaging standards, shared-memory standards, and programming abstractions
designed to help developers map algorithms onto the underlying hardware and schedule data motion and
computation with increased automation.

2.1.4 Plan

PMR contains fifteen L4 projects. To ensure relevance to DOE missions, these efforts leverage and collaborate
with existing activities within the broader HPC community. Initial efforts focus on identifying the core
capabilities needed by the selected ECP applications and components of the software stack, identifying
shortcomings of current approaches, establishing performance baselines of existing implementations on
available petascale and prototype systems, and the re-implementation of the lower-level capabilities of relevant

Exascale Computing Project (ECP) 14 ECP-RPT-ST-0001-2018

libraries and frameworks. These efforts provide demonstrations of parallel performance of algorithms on
pre-exascale, leadership-class machines–at first on test problems, but eventually in actual applications (which
will require close collaboration with the AD and HI teams). Initial efforts also inform research into exascale-
specific algorithms and requirements that will be implemented across the software stack. The supported
projects target and implement early versions of their software on CORAL, NERSC and ACES pre-exascale
systems–with an ultimate target of production-ready deployment on the exascale systems. Throughout the
effort, the applications teams and other elements of the software stack evaluate and provide feedback on
their functionality, performance, and robustness. Progress towards these goals is documented quarterly and
evaluated annually (or more frequently if needed) based on PMR-centric milestones as well as joint milestone
activities shared across associated software stack activities by Application Development and Hardware &
Integration focus areas.

2.1.5 Risks and Mitigation Strategies

The mainstream activities of PMR focus on advancing the capabilities of the Message Passing Interface (MPI)
and OpenMP. Pushing them as far as possible into the exascale era is key to supporting an evolutionary
path for applications. This is the primary risk mitigation approach for both PMR and existing application
codes. Extensions to MPI and OpenMP standards will require research, and part of the efforts will focus on
rolling these findings into existing standards, which takes time. To further address risks, PMR is exploring
alternative approaches to mitigate the impact of potential limitations of the MPI and OpenMP programming
models. This effort is tracked using the risk register.

Another risk is the failure of adoption of the software stack by the vendors, which is tracked in the risk
register, and mitigated by the specific delivery focus in sub-element SW Ecosystems and Delivery. Past
experience has shown that a combination of laboratory-supported open source software and vendor-optimized
solutions built around standard APIs that encourage innovation across multiple platforms is a viable approach
and what we are doing in PMR. We are using close interaction with the vendors early on to encourage
adoption of the software stack, including well-tested practices of including support for key software products
or APIs into large procurements through NRE or other contractual obligations. A mitigation strategy for
this approach involves building a long-lasting open source community around projects that are supported via
laboratory and university funding. This approach is being extended to other APIs and alternative models
(that are being defined and eventually standardized) to allow for deeper and stack-wide introspection as well
as resource sharing.

Creating a coordinated set of software requires strong management to ensure that duplication of effort is
minimized. This is recognized by ECP management, and processes are in place to ensure collaboration is
effective, shortcuts are avoided unless necessary, and an agile approach to development is instituted to prevent
prototypes moving directly to product. The duplication of effort specifically, and the overall integration of
the software stack, are tracked in the risk register.

2.2 DEVELOPMENT TOOLS

End State: A suite of development tools and supporting unified infrastructure aimed at improving developer
productivity across increasingly complex architectures, especially those targeted for Exascale platforms.

2.2.1 Scope and Requirements

For Exascale systems, the compilers, profilers, debuggers, and other software development tools must be
increasingly sophisticated to give software developers insight into the behavior of not only the application
and the underlying hardware but also the details corresponding to the underlying programming model
implementation and supporting runtimes (e.g., capturing details of locality and affinity). These capabilities
should be enhanced with further integration into the supporting compiler infrastructure and lower layers
of the system software stack (e.g., threading, runtime systems, and data transport libraries), and hardware
support. Most of the infrastructure will be released as open source, as many of them already are, with a
supplementary goal of transferring the technology into commercial products. Given the diversity of Exascale
systems architectures, some subset of the tools may be specific to one or more architectural features and is
potentially best implemented and supported by the vendor; however, the vendor will be encouraged to use

Exascale Computing Project (ECP) 15 ECP-RPT-ST-0001-2018

open APIs to provide portability, additional innovation, and integration into the tool suite and the overall
software stack.

2.2.2 Assumptions and Feasibility

The overarching goal of improving developer productivity for Exascale platforms introduces new issues of
scale that will require more lightweight methods, hierarchical approaches, and improved techniques to guide
the developer in understanding the characteristics of their applications and to discover sources of the errors
and performance issues. Additional efforts for both static and dynamic analysis tools to help identify lurking
bugs in a program, such as race conditions, are also likely needed. The suite of needed capabilities spans
interfaces to hardware-centric resources (e.g., hardware counters, interconnects, and memory hierarchies) to a
scalable infrastructure that can collect, organize, and distill data to help identify performance bottlenecks
and transform them into an actionable set of steps and information for the software developer. Therefore,
these tools share significant challenges due to the increase in data and the resulting issues with management,
storage, selection, analysis, and interactive data exploration. This increased data volume stems from multiple
sources, including increased concurrency, processor counts, additional hardware sensors and counters on the
systems, and increasing complexity in application codes and workflows.

Compilers obviously play a fundamental role in the overall programming environment but can also serve as a
powerful entry point for the overall tool infrastructure. In addition to optimizations and performance profiling,
compiler-based tools can help with aspects of correctness, establishing connections between programming
model implementations and the underlying runtime infrastructures, and auto-tuning. In many cases, today’s
compiler infrastructure is proprietary and closed source, limiting the amount of flexibility for integration and
exploration into the Exascale development environment. In addition to vendor compiler options, this project
aims to provide an open source compiler capability that can play a role in better supporting and addressing
the challenges of programming at Exascale.

2.2.3 Objectives

This project will design, develop, and deploy an Exascale suite of development tools built on a unified
infrastructure for development, analysis, and optimization of applications, libraries, and infrastructure from
the programming environments of the project. The overarching goal is to leverage and integrate the data
measurement, acquisition, storage, and analysis and visualization techniques being developed in other projects
of the software stack. The project will seek to leverage techniques for common and identified problem patterns
and create new techniques for data exploration related to profiling and debugging and support advanced
techniques such as autotuning and compiler integration. We will seek to establish an open-source compiler
activity leveraging activities around the LLVM infrastructure. These efforts will require collaboration and
integration with system monitoring and various layers within the software stack.

2.2.4 Plan

It is expected that multiple projects will be supported under the tools effort. To ensure relevance to DOE
missions, most of these efforts shall be DOE laboratory led and leverage and collaborate with existing
activities within the broader HPC community. Initial efforts will focus on identifying the core capabilities
needed by the selected ECP applications, components of the software stack, expected hardware features,
and the selected industry activities from within the Hardware and Integration focus area. The supported
projects will target and implement early versions of their software on both CORAL and APEX systems,
with an ultimate target of production-ready deployment on the Exascale systems. Throughout this effort
the applications teams and other elements of the software stack will evaluate and provide feedback on their
functionality, performance, and robustness. These goals will be evaluated yearly (or more often as needed)
based on milestones as well as joint milestone activities shared across the associated software stack activities
by AD and HI focus areas.

Exascale Computing Project (ECP) 16 ECP-RPT-ST-0001-2018

2.2.5 Risks and Mitigations Strategies

A risk exists in terms of adoption of the various tools and their supporting infrastructure by the broader
community, including support by system vendors. Past experience has shown that a combination of laboratory-
supported open source software and vendor-optimized solutions built around standard APIs that encourage
innovation across multiple platforms is a viable approach, and this will be undertaken. We will track this risk
primarily via the risk register.

Given its wide use within a range of different communities, and its modular design principles, the project’s
open source compiler activities will focus on the use of the LLVM compiler infrastructure as a path to reduce
both scope and complexity risks and leverage with an already established path for NRE investments across
multiple vendors. The compilers and their effectiveness are tracked in the risk register.

Another major risk for projects in this area is the lack of low-level access to hardware and software
necessary for using emerging architectural features. Many of these nascent architectural features have
immature implementations and software interfaces that must be refined prior to release to the broader
community. This project should be at the forefront of this interaction with early delivery systems. This risk
is also tracked in the risk register for compilers, which are particularly vulnerable.

2.3 MATHEMATICAL LIBRARIES

End State: Mathematical libraries that (i) interoperate with the ECP software stack; (ii) are incorporated
into the ECP applications; and (iii) provide scalable, resilient numerical algorithms that facilitate efficient
simulations on Exascale computers.

2.3.1 Scope and Requirements

Software libraries are powerful means of sharing verified, optimized algorithms and their implementations.
Applied research, development, and support are needed to extend existing DOE mathematical software
libraries to make better use of Exascale architectural features. DOE-supported libraries encapsulate the latest
results from mathematics and computer science R&D; many DOE mission-critical applications rely on these
numerical libraries and frameworks to incorporate the most advanced technologies available.

The Mathematical Libraries effort will ensure the healthy functionality of the numerical software libraries
on which the ECP applications will depend. The DOE mathematical software libraries used by computational
science and engineering applications span the range from light-weight collections of subroutines with simple
APIs to more “end-to-end” integrated environments and provide access to a wide range of algorithms for
complex problems.

Advances in mathematical and scientific libraries will be necessary to enable computational science on
Exascale systems. Exascale computing promises not only to provide more computational resources enabling
higher-fidelity simulations and more demanding studies but also to enable the community to pose new
scientific questions. Exascale architectural characteristics introduce new features that algorithms and their
implementations will need to address in order to be scalable, efficient, and robust. As a result, it will be
necessary to conduct research and development to rethink, reformulate, and develop existing and new methods
and deploy them in libraries that can be used by applications to deliver more complete and sophisticated
models and provide enhanced predictive simulation and analysis capabilities.

The Mathematical Libraries effort must (1) collaborate closely with the Application Development effort
(WBS 2.2) to be responsive to the needs of the applications and (2) collaborate with the other products
within the Software Technology effort (WBS 2.3) in order to incorporate new technologies and to provide
requirements. All software developed within the Mathematical Libraries effort must conform to best practices
in software engineering, which will be formulated early in the project in collaboration with the Applications
Development focus area. Software produced by this effort must provide scalable numerical algorithms that
enable the application efforts to reach their performance goals, encapsulated in libraries whose data structures
and routines can be used to build application software.

Exascale Computing Project (ECP) 17 ECP-RPT-ST-0001-2018

2.3.2 Assumptions and Feasibility

Years of DOE investment have led to a diverse and complementary collection of mathematical software,
including AMReX, Chombo, hypre, Dakota, DTK, MAGMA, MFEM, Mesquite, MOAB, PETSc/TAO,
PLASMA, ScaLAPACK, SUNDIALS, SuperLU, and Trilinos. This effort is evolving a subset of existing
libraries to be performant on Exascale architectures. In addition, research and development is needed into
new algorithms whose benefits may be seen only at the extreme scale. Results of preliminary R&D projects
indicate that this approach is feasible.

Additionally, ECP will need to rely on a strong, diverse, and persistent base math research program,
which is assumed to continue being supported by the DOE-SC ASCR Office. The ECP technical directors will
schedule quarterly meetings with the ASCR research program managers to get updates on research results
that might meet ECP requirements as well as to inform the program managers of ECP needs in applications
and software components.

2.3.3 Objectives

The high-level objective of the Mathematical Libraries effort is to provide scalable, resilient numerical
algorithms that facilitate efficient application simulations on Exascale computers. To the greatest extent
possible, this objective should be accomplished by preserving the existing capabilities in mathematical software
while evolving the implementations to run effectively on the Exascale systems and adding new capabilities
that may be needed by Exascale applications.

The key performance metrics for the software developed by this effort are scalability, efficiency, and
resilience. As a result of the new capabilities in mathematics libraries developed under this effort, applications
will tackle problems that were previously intractable and will model phenomena in physical regimes that
were previously unreachable.

2.3.4 Plan

As detailed below, the Mathematical Libraries effort supports complementary projects as needed to meet
the needs of ECP applications. To ensure relevance to DOE missions, these efforts are DOE-laboratory-led,
including strong collaborations with academia, industry, and other organizations, and leveraging existing
libraries that are widely used by the DOE HPC community.

Initial efforts focus on identifying core capabilities needed by selected ECP applications, establishing
performance baselines of existing implementations on available Petascale and prototype systems, and
beginning re-implementation of lower-level capabilities of the libraries and frameworks. Another key activity
is collaborating across all projects in the Mathematical Libraries effort to define community policies in order
to enable compatibility among complementary software and to provide a foundation for future work on deeper
levels of interoperability. Refactoring of higher-level capabilities will be prioritized based on needs of the
applications. In time, these efforts will provide demonstrations of parallel performance of algorithms from the
mathematical software on pre-Exascale, leadership-class machines (at first on test problems, but eventually
in actual applications). The initial efforts will also inform research into advanced exascale-specific numerical
algorithms that will be implemented within the libraries and frameworks. The projects will implement their
software on the CORAL, NERSC and ACES systems, and ultimately on initial Exascale systems, so that
functionality, performance, and robustness can be evaluated by the applications teams and other elements of
the software stack. Throughout the effort the applications teams and other elements of the software stack
will evaluate and provide feedback on their functionality, performance, and robustness. These goals will be
evaluated at least yearly based on milestones as well as joint milestone activities shared across the associated
software stack activities by Application Development and Hardware and Integration project focus areas.

2.3.5 Risks and Mitigations Strategies

There are a number of foreseeable risks associated with the Mathematical Libraries effort.

• Efficient implementation of new or refactored algorithms to meet Exascale computing requirements may
introduce unanticipated requirements on programming environments. To mitigate this risk, effective
communication is needed between projects in the Mathematical Libraries effort and projects tasked

Exascale Computing Project (ECP) 18 ECP-RPT-ST-0001-2018

with developing the programming environments. From the application perspective, this is specifically
tracked in a specific AD risk the risk register. Additionally, the risks of an inadequate programming
environment overall are tracked as a specific ST risk in the risk register.

• A significant number of existing algorithms currently implemented in numerical libraries may scale
poorly, thereby requiring significantly more effort than refactoring. The R&D planned for the first
three years of the ECP is the first mitigation for this risk (as well as the co-design centers planned in
Application Development). In addition, the ECP will be able to draw from a strong, diverse, well-run,
persistent base math research program. From the application perspective, this is tracked via an AD risk
in the risk register. Scaling issues for the software stack in general, including libraries, are monitored
via an ST risk in the risk register.

• Exascale architecture characteristics may force a much tighter coupling among the models, discretizations,
and solvers employed, causing general-purpose solvers to be too inefficient. The mitigation strategy is
to ensure close collaboration with the sub-elements of the Application Development focus area (WBS
2.2) to understand integration and coupling issues. Again, a strong, diverse, well-run, persistent base
math research program may provide risk mitigation strategies.

2.4 DATA & VISUALIZATION

End State: A production-quality storage infrastructure necessary to manage, share, and facilitate analysis
of data in support of mission critical codes. Data analytics and visualization software that effectively supports
scientific discovery and understanding of data produced by Exascale platforms.

2.4.1 Scope and Requirements

Changes in the hardware architecture of Exascale supercomputers will render current approaches to data
management, analysis and visualization obsolete, resulting in disruptive changes to the scientific workflow
and rendering traditional checkpoint/restart methods infeasible. A major concern is that Exascale system
concurrency is expected to grow by five or six orders of magnitude, yet system memory and input/output (I/O)
bandwidth/persistent capacity are only expected to grow by one and two orders of magnitude, respectively.
The reduced memory footprint per FLOP further complicates these problems, as does the move to a
hierarchical memory structure. Scientific workflow currently depends on exporting simulation data off the
supercomputer to persistent storage for post-hoc analysis.

On Exascale systems, the power cost of data movement and the worsening I/O bottleneck will make it
necessary for most simulation data to be analyzed in situ, or on the supercomputer while the simulation is
running. Furthermore, to meet power consumption and data bandwidth constraints, it will be necessary
to sharply reduce the volume of data moved on the machine and especially the data that are exported
to persistent storage. The combination of sharp data reduction and new analysis approaches heighten
the importance of capturing data provenance (i.e., the record of what has been done to data) to support
validation of results and post-hoc data analysis and visualization. Data and Visualization is the title for Data
Management (DM) & Data Analytics and Visualization (DAV) activities in the Exascale project.

Data management (DM) activities address the severe I/O bottleneck and challenges of data movement
by providing and improving storage system software; workflow support including provenance capture; and
methods of data collection, reduction, organization and discovery.

Data analytics and visualization (DAV) are capabilities that enable scientific knowledge discovery. Data
analytics refers to the process of transforming data into an information-rich form via mathematical or
computational algorithms to promote better understanding. Visualization refers to the process of transforming
scientific simulation and experimental data into images to facilitate visual understanding. Data analytics and
visualization have broad scope as an integral part of scientific simulations and experiments; they are also a
distinct separate service for scientific discovery, presentation and documentation purposes, as well as other
uses like code debugging, performance analysis, and optimization.

The scope of activities falls into the following categories:

• Scalable storage software infrastructure – system software responsible for reliable storage and retrieval
of data supporting checkpointing, data generation, and data analysis I/O workloads

Exascale Computing Project (ECP) 19 ECP-RPT-ST-0001-2018

• Workflow and provenance infrastructure – facilitating execution of complex computational science
processes and the capture and management of information necessary to interpret and reproduce results

• Data collection, reduction, and transformation – enabling complex transformation and analysis of
scientific data where it resides in the system and as part of data movement, in order to reduce the cost
to solution

• Data organization and discovery – indexing and reorganizing data so that relevant items can be identified
in a time- and power-efficient manner, and complex scientific data analysis can be performed efficiently
on Exascale datasets

• In situ algorithms and infrastructure – performing DAV while data is still resident in memory as the
simulation runs enabling automatic identification, selection and data reduction for Exascale applications.

• Interactive post-hoc approaches – on data extracts that produced in situ and support post-hoc under-
standing through exploration.

• Distributed memory multi-core and many-core approaches, for the portable, performant DM and DAV
at Exascale.

2.4.2 Assumptions and Feasibility

• Scaling up traditional DM and DAV approaches is not a viable approach due to severe constraints on
available memory and I/O capacity, as well as dramatically different processor and system architectures
being at odds with contemporary DAV architectures.

• Simulations will produce data that is larger and more complex, reflecting advances in the underlying
physics and mathematical models. Science workflows will remain complex, and increasing requirements
for repeatability of experiments, availability of data, and the need to find relevant data in Exascale
datasets will merit advances in workflow and provenance capture and storage.

• The expense of data movement (in time, energy, and dollars) will require data reduction methods,
shipping functions to data, and placing functionality where data will ultimately reside.

• Solid-state storage will become cheaper, denser, more reliable, and more ubiquitous (but not cheap
enough to replace disk technology in the Exascale timeframe). Exascale compute environments will have
in-system nonvolatile storage and off-system nonvolatile storage in addition to disk storage. Applications
will need help to make use of the complex memory/storage architectures.

• Disks will continue to gain density but not significant bandwidth; disks will become more of a capacity
solution and even less a bandwidth one.

• Industry will provide parts of the overall data management, data analysis and visualization solution,
but not all of it; non-commercial parts will be produced and maintained.

• This plan and associated costs were formulated based on the past decade of DOE visualization and data
analysis activities, including the successful joint industry/laboratory-based development of open-source
visualization libraries and packages (VTK, VisIt, and ParaView).

2.4.3 Objectives

Data management, analysis and visualization software must provide:

• production-grade Exascale storage infrastructure(s), from application interfaces to low-level storage
organization, meeting requirements for performance, resilience, and management of complex Exascale
storage hierarchies;

• targeted research to develop a production-grade in situ workflow execution system, to be integrated
with vendor resource management systems, meeting science team requirements for user-defined and
system-provided provenance capture and retention;

Exascale Computing Project (ECP) 20 ECP-RPT-ST-0001-2018

• production-grade system-wide data transfer and reduction algorithms and infrastructure, with user
interface and infrastructure for moving/reducing data within the system, to be integrated with vendor
system services and meeting science and national security team requirements; and

• production-grade metadata management enabling application and system metadata capture, indexing,
identification, and retrieval of subsets of data based on complex search criteria and ensures that
technologies target science and national security team requirements.

• targeted research to develop a production-grade in situ algorithms, to be integrated with open source
visualization and analysis tools and infrastructure, meeting science team data reduction requirements

• targeted research to develop a production-grade algorithms for the new types of data that will be
generated and analyzed on Exascale platforms as a result of increased resolution, evolving scientific
models and goals, and increased model and data complexity.

• targeted research to develop a production-grade post-hoc approach that support interactive exploration
and understanding of data extracts produced by in situ algorithms

• production-grade Exascale data analysis and visualization algorithms and infrastructure, meeting
requirements for performance, portability and sustainability for evolving hardware architectures and
software environments.

2.4.4 Plan

Particularly in the area of DM, productization of technologies is a necessary step for adoption, research-quality
software is not enough. One approach we will take is to fund vendors of products in related areas to integrate
specific technologies into their product line. When developing objectives for this activity, a focus was placed
on the availability of products that deliver these technologies on platforms of interest. Activities can be
separated into two categories:

• Community/Coordination – designed to build the R&D community, inform ourselves and the community
regarding activities in the area, track progress, and facilitate coordination.

• Targeted R&D – filling gaps in critical technology areas (storage infrastructure, workflow, provenance,
data reduction and transformation, and organization and discovery).

In the workflows area, the first 3 years of the project will identify existing software systems that are in use by
the DOE community and are aimed at applications that require HPC systems (eventually Exascale systems)
and support further R&D to the emerging requirements of Exascale workflows as well as interaction with
other parts of the software stack and adaptation to Exascale hardware architectures.

Portions of the DAV software stack are being productized and supported by industry, which will help to
control costs in the long term. Activities to achieve the DAV objectives are heavily dependent on developments
across the Exascale project, and thus close coordination with other teams is essential. Close engagement with
application scientists is crucial to the success of DAV, both in terms of understanding and addressing the
requirements of science at scale and ensuring that computational scientists are able to adopt and benefit
from the DAV deliverables.

Many objectives need initial research projects to define plausible solutions. These solutions will be
evaluated and progressively winnowed to select the best approaches for the Exascale machine and the needs
of science. Selected projects will continue to receive support to extend their research and development efforts
to integrate their solutions into the open-source Exascale software stack.

2.4.5 Risks and Mitigations Strategies

• Application teams may continue to employ ad hoc methods for performing data management in their
work, resulting in increased I/O bottlenecks and power costs for data movement. Application team
engagement, working within the overall software stack, and input into Hardware Integration will be
necessary if results are to be deployed, adopted, and significantly improve productivity.

Exascale Computing Project (ECP) 21 ECP-RPT-ST-0001-2018

• Despite funding vendor activities, industry partners may determine the market is insufficient to warrant
meeting Exascale requirements.

• If vendor integration and targeted R&D activities are not closely coordinated, gaps will not be effectively
identified and targeted, or successful R&D will not be integrated into industry products in the necessary
timeframe.

• Vendors supplying data management solutions are likely to be distinct from Exascale system vendors.
Additional coordination will be necessary, beyond DM productization, in order to ensure interoperability
of DM solutions with specific Exascale platforms.

• Data management from an application perspective is tracked in the risk register. The software stack
tracks several risks indirectly related to data management in the risk register as well.

• Failure of scientists to adopt the new DAV software is a major risk that is exacerbated if the DAV
software is research quality. Mitigating this risk depends on close engagement with domain scientists and
supporting layers of the software stack through co-design activities, as well as investment in development
and productization of DAV codes.

• Redundant efforts in domain science communities and within ASCR-supported activities such as
SciDAC result in wasted resources. Communication and close coordination provide the best strategy
for mitigation. This is tracked in the risk register.

• Fierce industry and government competition for DAV experts creates a drain on laboratory personnel in
DAV and makes lab hiring in this area difficult. Stable funding and a workforce development program
would help to mitigate these risks.

• The skilled workforce required for a successful Exascale project is tracked in in the risk register.

2.5 SW ECOSYSTEM & DELIVERY

End State: A production-ready software stack delivered to our facilities, vendor partners, and the open
source HPC community.

2.5.1 Scope and Requirements

The focus of this effort is on the “last mile” delivery of software that is intended to be supported by DOE
Facilities and/or vendor offerings. The scope of this effort breaks down into the following key areas:

• Oversight of the ST SDKs (Software Development Kits) developed in all five ST L3 areas, with a goal
of ensuring the SDKs are deployed as production-quality products at the Facilities, and available to the
broader open-source HPC community through coordinated releases

• Development of testing infrastructure (e.g., Continuous Integration) for use by ECP teams at the
Facilities

• Hardening and broad ST and facility adoption of Spack for easy build of software on all target platforms

• Development and hardening of new methods for software deployment through the use of container
technology

• Informal partnerships with the Linux Foundation’s OpenHPC project for potential broader deployment
of ST technologies in the OpenHPC ecosystem

• Co-design of ST solutions with (primarily ATDM) application teams, particularly in the area of
programming models, abstractions for performance portability, and optimized use on Exascale systems

• System software that is typically provided by the vendors on a platform, or tightly integrated with
vendor solutions – including resource managers, low-level runtimes, power management, and support
for hierarchical memory at the Operating System (OS) level

Exascale Computing Project (ECP) 22 ECP-RPT-ST-0001-2018

• Development of Flang through a subcontract with NVIDIA – a first-of-its-kind open source Fortran
compiler built on the LLVM toolchain

• Research in resilience to understand the impacts of faults on applications, software, and systems

A major goal of ST is to ensure that applications can trust that ST products will be available on DOE Exascale
systems in a production-quality state, which implies robust testing, documentation, and a clear line of support
for each product. This will largely be an integration effort building on both the SDKs project elements
defined in each ST L3 area, and tight collaboration and coordination with the Hardware Integration L3 area
for Deployment of Software on Facilities (WBS 2.4.4). We will work to develop foundational infrastructure
for technologies such as continuous integration and containers in tight collaboration with our DOE facility
partners. The ultimate goal is ensuring that the ECP software stack is robustly supported, as well as finding
a reach into the broader HPC open-source community – both of which provide the basis for long-term
sustainment required by applications, software, Facilities, and vendors who rely upon these products.

All three of the ATDM efforts in this area have a focus on integration of technologies into their new ATDM
applications being developed “from scratch” under AD National Security Applications. ATDM applications
are a high-risk, high-reward effort under tight timelines for delivery to the NNSA mission, and thus must
focus on integration with key ST technologies being developed at those labs from the beginning.

System software in the form of operating systems capabilities and low-level runtimes has historically been
built upon a node-centric viewpoint with a global view of the system tied together in a patchwork of add-on
tools and resource managers. In order to support higher-level software development, low-level software layers
must be provided to address hierarchical and non-uniform memory management, dynamic power management,
lightweight threading and process management, low-level distributed data movement (i.e., messaging), I/O
forwarding, and resilience and integrity issues. In addition, support for sophisticated resource scheduling and
management, including storage, must account for the ability to accomplish increasingly complex workflows
(e.g., ensembles, multi-physics, scale bridging, and uncertainly quantification).

The overarching goal of the resilience and integrity (RI) effort is to keep the application workload running
to an acceptably correct solution in a timely and efficient manner on future systems, even in the presence of
increasing failures, challenges in I/O scalability for checkpoint/restart, and silent (undetected) errors.

2.5.2 Assumptions and Feasibility

Success in this effort will require a coordinated effort across the entire hardware and software stack – in
particular with HI 2.4.4 (Delivery of Software to Facilities) and in some cases, our vendor partners. Recent
restructuring of the ECP to formalize this cooperation is a critical first step in enabling our goals, and this
area will drive toward ensuring those partnerships can flourish for mutual gain.

Given the project timelines and requirements of production systems at our Facilities, we do not envision
a wholly new system software stack as a feasible solution. We do however recognize that in many cases
the features of today’s HPC operating system environments will very likely need to either be evolved or
extended to meet the mission goals. This will require first, proof-of-concept on existing pre-Exascale hardware,
and ultimately – adoption of technologies by system vendors where required, and by other application and
software teams where user-level (i.e., non-kernel) solutions are developed.

2.5.3 Objectives

This area will focus on all aspects of integration of the ECP software stack, with a focus on putting the
infrastructure in place (in partnership with HI and the SDKs) for production-quality software delivery
through technologies such as continuous integration and containers. Likewise, we will aim to influence the
deployment of operating system, low-level runtimes, and perhaps containers typically deployed by our vendor
partners. Finally, our ATDM projects will focus on delivery and integration of novel software technologies
into next-generation applications under development in AD National Security Applications – with a goal of
demonstrating and hardening those technologies for possible use in other applications.

Additional goals include providing infrastructure and higher-level tools that address the requirements
and extensions for better resource allocation and job scheduling capabilities. These changes will address
the necessary aspects of system architectures, including storage resources, and the support for increasingly
complex workflows that are projected to occur within the Exascale environment.

Exascale Computing Project (ECP) 23 ECP-RPT-ST-0001-2018

The Flang effort is being developed by NVIDIA’s PGI compiler team based on the robust and widely
used PGF compiler. Flang was released on GitHub as an open source project in 2017, and is making solid
progress toward performance and portability goals. Our objective is to have Flang supported at the DOE
Facilities for use by ECP application teams, as well as taken up by vendors (Arm being an early adopter) as
a first-class Fortran solution

The objective of resilience efforts is that applications will run successfully and efficiently to timely
completion in the presence of any faults experienced on the system. Application developers will have the
necessary programming tools, libraries, and system support for incorporating resilience into their code. This
will include access to nonvolatile memory, fault tolerant libraries, and scientific libraries that are resilient to
soft errors and support application developers to implement their own resilient algorithms.

2.5.4 Plan

Initial efforts will be aimed at developing and deploying a continuous integration system at each of the DOE
Facilities based on the results of a working group established in 2017 that defined the key gaps missing in
current prototype CI solutions. In parallel with that effort, we will work closely with the five SDK projects
in developing a long-term plan for software deployment. We will also begin efforts to evaluate existing
container technologies (e.g., Bee, Argo, Singularity, others) built upon the widely-adopted Docker technology
base, and build on facility collaborations established for CI deployment to develop one or more solutions
for container deployment that meet the unique HPC requirements for performance and security. As Flang
becomes competitive in features and performance with other Fortran compilers, we will work with AD projects
on defining the scope of work for NVIDIA/PGI, and with the Facilities on deployment of recent Flang releases
for broad community testing and use.

Our plan is to hire an ECP Release Engineer who can work closely with the individual SDK projects in
each L3 area to develop common practices and delivery mechanisms. This could include a pathway for SDKs
into OpenHPC, as well as well-publicized incremental releases of SDKs.

2.5.5 Risks and Mitigations Strategies

• Vendors unwilling to adopt aspects of the Argo environment that require kernel-level support.

• Inability to staff the release engineer position with a qualified candidate (someone with DevOps expertise
who also understands the HPC environment).

• Delays in deploying a common CI infrastructure lead to subsequent delays in an integrated software
release.

• Multiple container technologies in flight will make it hard to come to agreement on a “common” looking
solution. Singularity isn’t funded by ECP. BEE and Argo are the only ECP funded items, and it is
unclear if they are the right final solution.

• Resilience work is a tiny fraction of effort. May need to consider a software co-design center around
this topic that would marry efforts between apps, ST, and vendors.

• ATDM efforts may continue to be inward-facing and not suitable for longer-term broad adoption if/when
technologies are successfully borne out in practice.

• OpenHPC partnership is ill-defined, and unfunded.

• Sustainability of ECP ST capabilities after ECP has ended.

Exascale Computing Project (ECP) 24 ECP-RPT-ST-0001-2018

3. ECP ST DELIVERABLES

ECP ST contributes to the HPC software
ecosystem through direct product devel-
opment, contributions to industry and de
facto standards, and shaping the require-
ments, design and prototyping of products
delivery by vendors and other third parties.

ECP ST efforts contribute to the HPC software
ecosystem in a variety of ways. Most tangible are the
contributions to software products, many of which
are already widely deployed and being transformed
for use with Exascale systems. However, ECP ST
contributes to industry and de facto standards ef-
forts. Finally, some ECP ST efforts contribute to the
upstream processes of requirements, analysis, design
and prototyping that informs the implementation
of vendor and other third-party software products.
While they do not receive the most attention, these
upstream efforts are very impactful and low cost,
without a product to support.

Figure 9: The 54 ECP ST Projects contribute to 89 unique products. ECP
ST products are delivered to users via many mechanisms. Provides experience
we can leverage across projects. Building via Spack is required for participating
in ECP ST releases: 48% of products already support Spack. 24% have Spack
support in progress. Use of Spack and the ECP ST SDKs will greatly improve
builds from source. 81 of 89 packages support users via source builds.

3.1 ECP ST PRODUCTS

ECP ST efforts contribute to 89 software products in five technical areas (Table 1). 33 of the 89 products are
broadly used in the HPC community and require substantial investment and transformation in preparation for
Exascale architectures. An additional 23 are important to some existing applications and typically represent
new capabilities that enable new usage models for realizing the potential that Exascale platforms promise.
The remaining products are in early development phases, addressing emerging challenges and opportunities
that Exascale platforms present.

Exascale Computing Project (ECP) 25 ECP-RPT-ST-0001-2018

Product Website Deployment Scope
GASNet-EX http://gasnet.lbl.gov Broad
Kokkos https://github.com/kokkos Broad
MPICH http://www.mpich.org Broad
OpenMPI https://www.open-mpi.org Broad
RAJA https://github.com/LLNL/RAJA Broad
ROSE https://github.com/rose-compiler Broad
CHAI https://github.com/LLNL/CHAI Moderate
Global Arrays http://hpc.pnl.gov/globalarrays Moderate
Legion http://legion.stanford.edu Moderate
LLVM OpenMP compiler https://github.com/SOLLVE Moderate
OpenMP V & V Suite https://bitbucket.org/crpl_cisc/sollve_vv/src Moderate
Qthreads https://github.com/Qthreads Moderate
Umpire https://github.com/LLNL/Umpire Moderate
UPC++ http://upcxx.lbl.gov Moderate
BOLT https://github.com/pmodels/argobots Experimental
DARMA https://github.com/darma-tasking Experimental
Intel GEOPM https://geopm.github.io Experimental
PaRSEC http://icl.utk.edu/parsec Experimental

Table 4: Programming Models and Runtimes Products (18 total).

Product Website Deployment Scope
Caliper https://github.com/llnl/caliper Broad
Dyninst Binary Tools Suite http://www.paradyn.org Broad
HPCToolkit http://hpctoolkit.org Broad
LLVM http://llvm.org/ Broad
PAPI http://icl.utk.edu/exa-papi Broad
SCR https://github.com/llnl/scr Broad
Tau http://www.cs.uoregon.edu/research/tau Broad
mpiFileUtils https://github.com/hpc/mpifileutils Moderate
openarc https://ft.ornl.gov/research/openarc Moderate
Papyrus https://ft.ornl.gov/research/papyrus Moderate
Program DB Toolkit (PDT) https://www.cs.uoregon.edu/research/pdt Moderate
TriBITS https://tribits.org Moderate
CHiLL Compiler Experimental
Exascale Code Gen Toolkit Experimental
Gotcha http://github.com/llnl/gotcha Experimental
Kitsune https://github.com/lanl/kitsune Experimental
QUO https://github.com/lanl/libquo Experimental
SICM Experimental
SuRF Experimental

Table 5: Development Tools Products (19 total).

Exascale Computing Project (ECP) 26 ECP-RPT-ST-0001-2018

http://gasnet.lbl.gov
https://github.com/kokkos
http://www.mpich.org
https://www.open-mpi.org
https://github.com/LLNL/RAJA
https://github.com/rose-compiler
https://github.com/LLNL/CHAI
http://hpc.pnl.gov/globalarrays
http://legion.stanford.edu
https://github.com/SOLLVE
https://bitbucket.org/crpl_cisc/sollve_vv/src
https://github.com/Qthreads
https://github.com/LLNL/Umpire
http://upcxx.lbl.gov
https://github.com/pmodels/argobots
https://github.com/darma-tasking
https://geopm.github.io
http://icl.utk.edu/parsec
https://github.com/llnl/caliper
http://www.paradyn.org
http://hpctoolkit.org
http://llvm.org/
http://icl.utk.edu/exa-papi
https://github.com/llnl/scr
http://www.cs.uoregon.edu/research/tau
https://github.com/hpc/mpifileutils
https://ft.ornl.gov/research/openarc
https://ft.ornl.gov/research/papyrus
https://www.cs.uoregon.edu/research/pdt
https://tribits.org
http://github.com/llnl/gotcha
https://github.com/lanl/kitsune
https://github.com/lanl/libquo

Product Website Deployment Scope
hypre http://www.llnl.gov/casc/hypre Broad
Kokkoskernels https://github.com/kokkos/kokkos-kernels Broad
MFEM http://mfem.org/ Broad
PETSc/TAO http://www.mcs.anl.gov/petsc Broad
SLATE http://icl.utk.edu/slate Broad
SUNDIALS https://computation.llnl.gov/projects/sundials Broad
SuperLU http://crd-legacy.lbl.gov/~xiaoye/SuperLU Broad
Trilinos https://github.com/trilinos/Trilinos Broad
DTK https://github.com/ORNL-CEES/DataTransferKit Moderate
FleCSI http://www.flecsi.org Moderate
MAGMA-sparse https://bitbucket.org/icl/magma Moderate
STRUMPACK http://portal.nersc.gov/project/sparse/strumpack Moderate
xSDK https://xsdk.info Moderate
ForTrilinos https://trilinos.github.io/ForTrilinos Experimental
libEnsemble https://github.com/Libensemble/libensemble Experimental
Tasmanian http://tasmanian.ornl.gov Experimental

Table 6: Mathematical Libraries Products (16 total).

Product Website Deployment Scope
Catalyst https://www.paraview.org/in-situ Broad
Darshan http://www.mcs.anl.gov/research/projects/darshan Broad
HDF5 https://www.hdfgroup.org/downloads Broad
IOSS https://github.com/gsjaardema/seacas Broad
Parallel netCDF http://cucis.ece.northwestern.edu/projects/PnetCDF Broad
ParaView https://www.paraview.org Broad
ROMIO http://www.mcs.anl.gov/projects/romio Broad
VeloC https://xgitlab.cels.anl.gov/ecp-veloc Broad
VisIt https://wci.llnl.gov/simulation/computer-codes/visit Broad
VTK-m http://m.vtk.org Broad
ADIOS https://github.com/ornladios/ADIOS2 Moderate
ASCENT https://github.com/Alpine-DAV/ascent Moderate
Cinema https://datascience.lanl.gov/Cinema.html Moderate
zfp https://github.com/LLNL/zfp Moderate
C2C Experimental
FAODEL https://github.com/faodel/faodel Experimental
GUFI https://github.com/mar-file-system/GUFI Experimental
HXHIM http://github.com/hpc/hxhim.git Experimental
MarFS https://github.com/mar-file-system/marfs Experimental
Mercury http://www.mcs.anl.gov/research/projects/mochi Experimental
ROVER Experimental
Siboka Experimental
SZ https://github.com/disheng222/SZ Experimental
TuckerMPI Experimental
UnifyCR https://github.com/LLNL/UnifyCR Experimental

Table 7: Visualization and Data Products (25 total).

Exascale Computing Project (ECP) 27 ECP-RPT-ST-0001-2018

http://www.llnl.gov/casc/hypre
https://github.com/kokkos/kokkos-kernels
http://mfem.org/
http://www.mcs.anl.gov/petsc
http://icl.utk.edu/slate
https://computation.llnl.gov/projects/sundials
http://crd-legacy.lbl.gov/~xiaoye/SuperLU
https://github.com/trilinos/Trilinos
https://github.com/ORNL-CEES/DataTransferKit
http://www.flecsi.org
https://bitbucket.org/icl/magma
http://portal.nersc.gov/project/sparse/strumpack
https://xsdk.info
https://trilinos.github.io/ForTrilinos
https://github.com/Libensemble/libensemble
http://tasmanian.ornl.gov
https://www.paraview.org/in-situ
http://www.mcs.anl.gov/research/projects/darshan
https://www.hdfgroup.org/downloads
https://github.com/gsjaardema/seacas
http://cucis.ece.northwestern.edu/projects/PnetCDF
https://www.paraview.org
http://www.mcs.anl.gov/projects/romio
https://xgitlab.cels.anl.gov/ecp-veloc
https://wci.llnl.gov/simulation/computer-codes/visit
http://m.vtk.org
https://github.com/ornladios/ADIOS2
https://github.com/Alpine-DAV/ascent
https://datascience.lanl.gov/Cinema.html
https://github.com/LLNL/zfp
https://github.com/faodel/faodel
https://github.com/mar-file-system/GUFI
http://github.com/hpc/hxhim.git
https://github.com/mar-file-system/marfs
http://www.mcs.anl.gov/research/projects/mochi
https://github.com/disheng222/SZ
https://github.com/LLNL/UnifyCR

Product Website Deployment Scope
Flang/LLVM Fortran compiler http://www.flang-compiler.org Broad
Spack https://github.com/spack/spack Broad
ArgoContainers https://xgitlab.cels.anl.gov/argo/containers Moderate
BEE Experimental
FSEFI Experimental
Sonar Experimental
Secure JupyterHub Experimental
Kitten Lightweight Kernel https://github.com/HobbesOSR/kitten Experimental
AML https://xgitlab.cels.anl.gov/argo/aml Experimental
COOLR https://github.com/coolr-hpc Experimental
NRM https://xgitlab.cels.anl.gov/argo/nrm Experimental

Table 8: Software Delivery and Ecosystems Products (11 total).

3.2 STANDARDS COMMITTEES

An important activity for ECP ST staff is participation in standards efforts. In many instances, our software
will not be sustainable if it is not tightly connected to a standard. At the same time, any standard has to
take into account the emerging requirements that Exascale platforms need in order to achieve performance
and portability. Figure 10 summarized ECP ST staff involvement in the major standards efforts that impact
ECP.

ECP ST staff are heavily involved in MPI and OpenMP standards efforts. ECP ST staff hold several
key leadership positions and have heavy involvement in all aspects. ECP ST staff also play a critical role
in C++ standards efforts. While DOE staff have only recently engaged in C++ standards, our efforts are
essential to getting HPC requirements considered, especially by contributing working code that demonstrates
requirements and design. ECP ST sponsors the newest open source Fortran compiler Flang 4.5.8, a front
end for LLVM. This compiler is a rapidly emerging and essential part of the HPC ecosystem. In particular,
while ARM processors are not explicitly part of the pre-Exascale ecosystem, they are emerging as a strong
contender in the future. Flang is the Fortran compiler for ARM-based systems. ECP ST involvement in
other committees, including the de facto also provide valuable leverage and improved uniformity for HPC
software. Lastly, we mention the Visualization Toolkit (VTK) Architecture Review Board (ARB). While this
is only a single instance, we intend to explore the ARB model as part of our SDK efforts.

3.3 CONTRIBUTIONS TO EXTERNAL SOFTWARE PRODUCTS

While much of ECP ST efforts and focus are on the product that we develop and support, it is important to
note that some of our important work, and certainly some our most sustainable and highly leveraged work, is
done by providing requirements, analysis, design and prototype capabilities for vendor and other third party
software. Many software studies have shown that 70 to 80% of the cost of a successful software product goes
into post-delivery maintenance. Our effort summarized in Table 9 expressly eliminate this large cost for DOE
because the product is developed and supported outside of DOE.

Exascale Computing Project (ECP) 28 ECP-RPT-ST-0001-2018

http://www.flang-compiler.org
https://github.com/spack/spack
https://xgitlab.cels.anl.gov/argo/containers
https://github.com/HobbesOSR/kitten
https://xgitlab.cels.anl.gov/argo/aml
https://github.com/coolr-hpc
https://xgitlab.cels.anl.gov/argo/nrm

Product Contribution

MAGMA
ECP ST math libraries efforts inform the design, implementation,
and optimization of numerical linear algebra routines on NVIDIA
GPUs

Compilers and runtime
The Validation and Verification Suite (on-going effort) for the
SOLLVE project has helped uncover bugs in OpenMP
implementations provided by Cray, LLVM and XL.

SWIG (www.swig.org)
The ECP ST ForTrilinos efforts contributes the capability to
generate automatic Fortran bindings from C++ code.

TotalView debugger

ECP ST staff are engaged in co-design of OMPD, the new
debugging interface for OpenMP programs, along with RogueWave
engineers. This effort helps RogueWave improve their main
debugging product, TotalView, by making it aware and compatible
with recent advances in OpenMP debugging.

MPI Forum

ECP ST staff maintain several chapters of the MPI Forum, effort
that require a constant involvement with the other authors, as well
as participation to the online discussions related to the chapter and
regular attendance of the MPI Forum face-to-face activities. An
ECP ST staff member belongs to several working group related to
scalability and resilience where, in addition to the discussions,
implements proof-of-concept features in OpenMPI.

Cray MPICH MPI-IO

As part of the ExaHDF5 ECP project, the ALCF worked with
Cray MPI-IO developers to merge the upstream ROMIO code into
the downstream proprietary Cray MPICH MPI-IO, leveraging
Cray’s extensive suite of IO performance tests and further tuning
the algorithm. Cray is currently targeting it’s deployment in an
experimental release.

OpenHPC
An ECP ST staff member serves on the OpenHPC Technical
Steering Committee as a Component Development representative.

LLVM
An ECP ST staff member is co-leading design discussions around
the parallel IR and loop-optimization infrastructure.

Table 9: External products to which ECP ST activities contribute. Participa-
tion in requirements, analysis, design and prototyping activities for third-party
products is some of the most effective software work we can do.

Exascale Computing Project (ECP) 29 ECP-RPT-ST-0001-2018

Figure 10: ECP ST staff are involved in a variety of official and de facto
standards committees. Involvement in standards efforts is essential to assuring the
sustainability of our products and to assure that emerging Exascale requirements
are addressed by these standards.

Exascale Computing Project (ECP) 30 ECP-RPT-ST-0001-2018

4. ECP ST PROJECT SUMMARIES

This section of the ECP ST Capabilities Assessment Report provides two-page summaries of each funded
project. The text provides a project overview and summarizes the key challenges, solution strategy, recent
progress and next steps for the project.

Exascale Computing Project (ECP) 31 ECP-RPT-ST-0001-2018

4.1 PROGRAMMING MODELS & RUNTIMES

This section present projects in Programming Models & Runtimes.

Exascale Computing Project (ECP) 32 ECP-RPT-ST-0001-2018

4.1.1 Programming Models & Runtimes Software Development Kits

Overview The Programming Models & Runtimes SDK effort is focused on identifying meaningful aggrega-
tions of products in this technical area. SDK efforts are in the early stages of planning and execution. Most
of the work on SDKs has been driven from the SW Ecosystem & Delivery technical area. A description of
the SDK effort can be found in Section 4.5.1.

Exascale Computing Project (ECP) 33 ECP-RPT-ST-0001-2018

4.1.2 LANL ATDM Programming Models and Runtimes

Overview The LANL ATDM PMR effort is focusing on the development and use of advanced programming
models for Advanced Technology Development and Mitigation use-cases. Our current focus is on research and
development of new programming model capabilities in the Legion data-centric programming system. Legion
provides unique capabilities that align well with our focus on the development of tools and technologies that
enables a separation of concerns of computational physicists and computer scientists. Within the ATDM
PMR effort we have focused on the development of significant new capabilities within the Legion runtime
that are specifically required to support LANL’s ATDM applications. Another key component of our work is
the co-design and integration of advanced programming model research and development within FleCSI, a
Flexible Computational Science Infrastructure.

A major benefit to the broader ECP community is the development of new features in the Legion
programming system which are available as free open-source software https://gitlab.com/StanfordLegion/
legion.

Key Challenges

Legion.
Applications will face significant challenges in realizing sustained performance on next-generation systems.

Increasing system complexity coupled with increasing scale will require significant changes to our current
programming model approaches. This is of particular importance for large-scale multi-physics applications
where the application itself is often highly dynamic and can exhibit high variability in resource utilization
and system bottlenecks depending on what physics are currently in use (or emphasized). Our goal in the
LANL ATDM PMR project is to support these highly dynamic applications on Exascale systems, providing
improvements in productivity, long-term maintainability, and performance portability of our next-generation
applications.

FleCSI Legion integration. FleCSI is a Flexible Computational Science Infrastructure whose goal is
to provide a common framework for application development for LANL’s next-generation codes. FleCSI is
required to support a variety of different distributed data structures and computation on these data structures
including structured and unstructured mesh as well as mesh-free methods. Our work in the LANL ATDM
PMR project is focused on co-designing the FleCSI data and execution model with the Legion programming
model to ensure the latest advancements in the programming model and runtimes research community
are represented in our computational infrastructure. A significant challenge in our work is the additional
constraint that FleCSI must also support other runtime systems such as MPI. Given this constraint, we have
chosen an approach that ensures functional correctness across both runtimes but that also leverages and
benefits from capabilities in Legion that are not directly supported in MPI (such as task-based parallelism as
a first-class construct).

Solution Strategy

Legion.
In funded collaboration with NVIDIA, LANL and NVIDIA are developing new features in Legion to support

our applications. Necessary features are identified through direct engagement with application developers and
through rapid development, evaluation, and refactoring within the team. Major features include Dynamic
Control Replication for improved scalability and productivity as well as Fortran interoperability for Legion
based applications.

FleCSI Legion integration. LANL staff work on co-design and integration of the Legion programming
system into the FleCSI framework. We have regular milestones that align well with application needs and
the development of new features within Legion.

Recent Progress

Legion. One of the strengths of Legion is that it executes asynchronous tasks as if they were executed
in the sequence they occur in the program. This provides the programmer with a mental model of the

Exascale Computing Project (ECP) 34 ECP-RPT-ST-0001-2018

https://gitlab.com/StanfordLegion/legion
https://gitlab.com/StanfordLegion/legion

Figure 11: New Legion features such as dynamic tracing significantly
improves strong scaling in unstructured mesh computations.

computation that is easy to reason about. However, the top-level task in this tree-of-tasks model can often
become a sequential bottleneck, as it is responsible for the initial distribution of many subtasks across large
machines. In earlier work NVIDIA developed the initial implementation of control replication, which allows
the programmer to write tasks with sequential semantics that can be transparently replicated many times, as
directed by the Legion mapper interface, and run in a scalable manner across many nodes. Dynamic control
replication is an important capability for LANL’s ATDM effort, allowing our application teams to write
applications with apparently sequential semantics while enabling scalability to Exascale architectures. This
approach will improve understandability of application code, productivity, and composability of software and
ease the burden of optimization and porting to new architectures.

FleCSI Legion Integration. A key component of LANL’s Advanced Technology Development and
Mitigation effort is the development of a flexible computational science infrastructure (FleCSI) to support a
breadth of application use cases for our Next Generation Code. FleCSI has been co-designed with the Legion
programing system in order to enable our Next Generation Code to be performance portable and scalable to
future Exascale systems. Legion provides the underlying distributed and node-level runtime environment
required for FleCSI to leverage task and data parallelism, data dependent execution, and runtime analysis of
task dependencies to expose parallelism that would be tedious and error prone to expose at the application
or middleware level. We completed an evaluation of the initial implementation of FleCSI on Legion using the
FleCSALE hydrodynamics application.

Next Steps

FleCSI. Focus on performance and scalability enhancements of the Dynamic Control Replication and
other new Legion features.

FleCSI Legion Integration. Demonstrate the integration of Dynamic Control Replication and other
new Legion features within FleCSI. Our goal is to demonstrate a multi-scale application on the Advanced
Technology System, Sierra using our latest advances in the Legion and FleCSI systems.

Exascale Computing Project (ECP) 35 ECP-RPT-ST-0001-2018

4.1.3 LLNL ATDM Programming Models and Runtimes

Overview This project covers two main thrusts in programming models standards and runtimes for exascale
supercomputing systems. The first thrust is programming models standards work in MPI and OpenMP.

The Message Passing Interface Standard (MPI) is a message passing library standard based on the
consensus of the MPI Forum, which has over 40 participating organizations, including vendors, researchers,
software library developers, and users. The goal of the Message Passing Interface is to establish a portable,
efficient, and flexible standard for message passing that will be widely used for writing message passing
programs. As such, MPI is the first standardized, vendor independent, message passing library. The
advantages of developing message passing software using MPI closely match the design goals of portability,
efficiency, and flexibility. MPI is not an IEEE or ISO standard, but has in fact, become the “industry
standard” for writing message passing programs on HPC platforms.

OpenMP (Open Multi-Processing) is an application programming interface (API) that supports multi-
platform shared memory multiprocessing programming in C, C++, and Fortran, on most HPC platforms. To
enable portable tools for performance analysis and debugging of OpenMP programs, the OpenMP Language
Committee is defining application programming interfaces for tools; these interfaces are expected to be part
of the OpenMP standard and supported by all OpenMP compliant implementations. There are two parts
to the proposed interfaces: OMPT (a first-party API for performance tools), and OMPD (a shared-library
plugin for debuggers that enables a debugger to inspect and control execution of an OpenMP program).

The other main thrust area for LLNL is the ROSE project’s work in support of ATDM Exascale application
efforts. ROSE is an open source compiler infrastructure to build source-to-source program transformation and
analysis tools for large-scale Fortran 77/95/2003, C, C++, OpenMP, and UPC applications. The intended
users of ROSE could be either experienced compiler researchers or library and tool developers who may
have minimal compiler experience. ROSE is particularly well suited for building custom tools for static
analysis, program optimization, arbitrary program transformation, domain-specific optimizations, complex
loop optimizations, performance analysis, and cyber-security.

Key Challenges

ROSE. We will develop advanced program transformation and analysis to improve correctness and
performance of RAJA codes. The research results will be communicated to RAJA maintainers to improve
the RAJA portable programming layer. Both of these LLNL efforts in this area are crucial for ECP and ASC
applications to achieve portable performance on upcoming Exascale systems.

MPI. For MPI, we focus on interfaces for supporting tools, including MPI T and MPIR, and for fault
tolerance, including Reinit. Tools for MPI are critical to ensure that applications achieve high communication
performance, and understanding and designing fault tolerance interfaces are important for large scale jobs on
faulty systems. The participants will follow development across the standard in addition to the tools and
fault tolerance areas.

OpenMP. In OpenMP, our focus is on the tools interfaces OMPT and OMPD. Tools are critical for
application developers to understand the correctness and performance of their codes when using OpenMP.
We will participate and monitor developments in all parts the standard in addition to our focus areas.

Solution Strategy

ROSE. The team is working to support advanced loop transformations on RAJA code; finding loops
susceptible to data races in ASC applications; and performing performance analysis of RAJA code. ROSE
improvements will be released as open source at https://github.com/rose-compiler/rose.

MPI. LLNL staff regularly participate in regular calls and discussions for the Tools Working Group,
Fault Tolerance Working Group, Sessions Working Group and attend Forum meetings that occur during the
quarter.

OpenMP. Regularly participate in weekly OpenMP language committee calls, participate in biweekly
calls of the OpenMP tools WG, email discussions on OpenMP tools interfaces (OMPD and OMPT).

Exascale Computing Project (ECP) 36 ECP-RPT-ST-0001-2018

https://github.com/rose-compiler/rose

Figure 12: Work by ROSE team shows performance gap analysis for
RAJA with different compilers.

Recent Progress

ROSE. The team continued to improve ROSE’s C++11 support and the ROSE-based tool, rajaChecker.
With bug fixes to ROSE, rajaChecker can process 1650 files in an ASC application without errors, compared
to the original 1405 files. We also added new features into rajaChecker, such as recognizing user-defined RAJA
wrappers, MIN/MAX macros, indirect loop index variables, etc. The latest test shows that rajaChecker finds
87 loops in an ASC application matching the data race pattern users requested, compared to the original 20.

MPI. The MPI participants participated in the design of new approaches to incorporate fault tolerance
in the MPI Standard, including standardizing primitives to support fundamental fault-tolerance methods.
They also worked on the MPI T Events interface for tools. The MPI participants attended the MPI Forum
meeting in Portland in February and proposed new approaches to incorporate fault tolerance in the MPI
Standard, including standardizing primitives to support fundamental fault-tolerance methods.

OpenMP. In OpenMP, the project members worked with the Tools subcommittee to prepare and enact
several tickets to improve OMPT and OMPD specifications. The project members attended the OpenMP
face-to-face meeting in Austin and worked with the Tools subcommittee to prepare and enact several tickets
to improve OMPT and OMPD specifications.

Next Steps

ROSE. Continue to improve ROSE support for RAJA and ASC applications.
MPI. Continue to participate in MPI Forum on fault tolerance and tools.
OpenMP. Continue to participate in OpenMP Standards Committee on tools and debuggers.

Exascale Computing Project (ECP) 37 ECP-RPT-ST-0001-2018

4.1.4 SNL ATDM Programming Models: Kokkos

Overview Kokkos provides a C++ Parallel Programming Model for Performance Portability. It is imple-
mented as a C++ abstraction layer over existing parallel programming models such as OpenMP, CUDA and
C++ std::threads. Application and library developers can implement their code using Kokkos, which will map
their parallel algorithms onto the underlying execution mechanism. Codes written in that manner can then
be compiled to run on each current HPC platform, including CPU and GPU based systems. Furthermore,
new types of architectures generally need only be added to Kokkos, while no changes are necessary to end
applications - even if the new architecture requires its own custom programming mechanism.

Key Challenges Teams of scientists, engineers, and mathematicians apply their specific expertise to
develop application software to solve problems from their specialized domains. The largest and most complex
of these require the use of High Performance Computing (HPC). For more than two decades, HPC applications
used parallel computing on a network of compute-nodes consisting of a computer chip with either a single
core or very few processing cores and memory dedicated to each core. However, the “many-core revolution,”
which has slowly arisen in the last five years, has dramatically changed the nature of HPC because processors
in modern compute-nodes have many cores that must share the compute-node’s memory.

The many-core revolution in computing is characterized by: (1) a steady increase in the number of cores
within individual computer chips; (2) a corresponding decrease in the amount of memory per core that must
be shared by the cores of a chip, and, (3), the diversity of computer chip architectures. This diversity is
highly disruptive because each architecture imposes different complex and sometimes conflicting requirements
on software to perform well on an architecture. Application software development teams are confronted with
the dual challenges of: (1) inventing new parallel algorithms for many-core chips, (2) learning the different
programming mechanisms of each architecture, and (2), creating and maintaining separate versions of their
software specialized for each architecture. These tasks may involve considerable overhead for organizations in
terms of time and cost. Adapting application software to changing HPC requirements is already becoming a
large expense for HPC users and can be expected to grow as the diversity of HPC architectures continues to
rise. An alternative, however, is creating software that is performance portable across current and future
architectures.

A key issue for achieving performance portability is, that one does not only need to address parallel
execution but also data management. This includes the handling of memory hierarchies consisting of resources
such as HBM, DDR and NVM memory as well as the question of memory layouts, which might need to be
different for various architectures.

Solution Strategy The Kokkos project developed a parallel programming model with flexible enough
semantics that it can be mapped on a diverse set of HPC architectures including current multi-core CPUs
and massively parallel GPUs. The programming model is implemented using C++ template abstractions,
which allow a compile time translation to the underlying programming mechanism on each platform, using
their respective primary tool chains. Compared to approaches which rely on source-to-source translators or
special compilers, this way leverages the investment of vendors in their preferred programming mechanism
without introducing additional, hard to maintain, tools in the compilation chain.

Figure 13: Kokkos Execution and Memory Abstractions

Exascale Computing Project (ECP) 38 ECP-RPT-ST-0001-2018

Applications written in Kokkos are leveraging its six core abstractions for parallel execution and data
management. These abstractions provide the flexibility to allow the mapping of execution and data to the
diverse set of architectures. As an example the ”parallel for” Execution Pattern does neither guarantee
order of execution nor concurrency of execution. That allows Kokkos to use threading, vectorization or even
pipelining of operations to parallelize the algorithm.

The Parallel Execution abstractions are (1) Execution Patterns, (2) Execution Policies, and (3) Execution
Spaces. Execution Patterns describe what fundamental parallel algorithm is performed. This includes parallel
loops, parallel reductions, and parallel scans as well as task spawn operations. Execution Policies control
how the patterns are executed. They for example control the iteration space and whether scheduling is done
dynamically or statically. Execution Spaces denote different resources to execute on such as GPU or CPU.

The Memory abstractions are (1) Memory Layout, (2) Memory Traits, and (3) Memory Space). Memory
Layout describes the mapping of logical indices to the actual memory address. This allows to change the
data access pattern in an algorithm without changing the implementation of the algorithm. Memory Traits
describe access properties, such as whether the user wants to perform atomic accesses, or whether accesses
are guaranteed non-aliased. Memory Spaces control where data is allocated. This allows users to access HBM
and DDR memory as well as special Scratch Memory.

As a programming model, Kokkos is highly invasive in any code it is used by. Consequently, software
quality is a critical concern. Kokkos addresses this through a comprehensive testing regime, which includes
over 250 combinations of compilers, hardware platforms and backends which are run every night. These tests
cover current production HPC environments as well as prototype environments for future systems.

Kokkos is available to users under the BSD license, permitting use of Kokkos in other open source codes
as well as closed source code. It is maintained and developed at https://github.com/kokkos/kokkos.

Recent Progress Kokkos is now used by a wide number of applications at various institutions. This
includes multiple DOE laboratories as well as universities and other HPC centers. At Sandia National
Laboratories Kokkos is the primary programming model to address support for GPU based platforms in
a performance portable manner, and numerous production level applications are actively porting to using
Kokkos. The SNL ATDM applications are largely demonstrating performance portability today for a subset
of their capabilities and are working towards full fletched support of all HPC platforms.

Recent advances in Kokkos include support for more portable and performant scatter-add type algorithms,
dynamic and static task graph support as well as support for NIVDIA Volta and ARM CPU architectures.
This enables Kokkos applications to run on the DOE Summit and Sierra machines, which are getting installed
now as well as at the upcoming Vanguard ARM based machine to be installed at Sandia in Summer 2018.

Next Steps The Kokkos team is working with the Path Forward vendors to enable support for their
architectures. This notably includes a new backend, called ROCm, for AMD GPUs, which is primarily
developed by AMD itself. Furthermore, improvements on the dynamic task graph execution on GPUs are
planned, in order to reduce the task granularity necessary to make effective use for GPUs.

Exascale Computing Project (ECP) 39 ECP-RPT-ST-0001-2018

4.1.5 SNL ATDM Programming Models: DARMA

Overview DARMA (Distributed, Asynchronous, Resilient Models for Applications) embeds safe and
performant asynchronous tasking constructs in C++. DARMA defines asynchronous semantics for C++,
providing a futures-based programming model. DARMA, however, provides additional semantics that carry
extra safety and performance guarantees, including race freedom, fully non-blocking execution, and simplified
load balancing and communication overlap. These semantics are implemented as a standards-compliant C++
header library, embedding asynchronous execution via metaprogramming.

Key Challenges Dynamic applications can be characterized by either unknown, imbalanced, or rapidly
varying computation loads and communication patterns. Particle-in-cell, for example, has varying compu-
tational load per mesh region. As particles migrate, it also requires dynamic termination detection before
entering a field solve phase. Overlap detection in contact algorithms rapidly creates load imbalance, which
must be mitigated dynamically, in regions where contact occurs. Addressing these algorithmic challenges can
involve:

• Latency-hiding of communication by trying to improve overlap with computation

• Elastic tasks with built-in data parallelism that can leverage more cores for larger tasks

• Asynchronous quiescence detection to avoid global synchronizations and minimize communication

• Semi-static load balancing (globally synchronous) for problems with persistent load imbalance

• Dynamic load balancing (work stealing) for problems with rapidly varying load imbalance

One possible option is for application developers to pursue domain-specific, ad hoc solutions. Managing
things like resource contention between elastic tasks or implementing spanning trees for quiescence are
highly non-trivial. A far more sustainable and productive approach would be providing these execution
patterns in a reusable library with implementation complexities hidden behind a productive programming
model. Programming should emphasize problem decomposition, data effect specification for correctness, and
domain-specific cost models and heuristics for performance portability. The key challenges are both defining
the programming abstractions to be used at application-level and implementing these dynamic execution
constructs at the runtime-level.

Solution Strategy Similar to standard futures that create data-flow for C++ datatypes, DARMA provides
asynchronous pointers with well-defined semantics that augment data-flow with non-blocking and race freedom
guarantees. DARMA asynchronous pointers cab define serialization for arbitrary C++ types, enabling load
balancing and asynchronous communication overlap. DARMA asynchronous pointers are intended to express
concurrency in a sufficiently general way that multiple runtimes could serve as the backend implementation
(Figure 14). To date, HPX (futures/promises), Charm++ (actor model), and MPI + OpenMP have all been
able to provide relatively lightweight implementations despite their obvious design differences.

Another general approach consistent with the DARMA model for reducing algorithmic complexity is
task over-decomposition in the context of shared-memory parallelism. For example, taking an MPI rank as
the fundamental unit, over-decomposition would create many (e.g. 4-16) regions or patches per MPI rank,
rather than a single large patch as would be most common. Overdecomposition aims to avoid complexities
in explicit, application-level load balancing and explicit, application-level communication latency hiding.
When load imbalance occurs, entire tasks can be migrated without requiring re-meshing or updating data
structures. Similarly, communication occurs transparently through task dependencies, naturally pipelining
and overlapping communication without requiring explicit Isend/wait constructs.

DARMA allows algorithms to be expressed with flexible granularity, tuning overdecomposition factors
to meet either a hardware requirement (e.g. optimal balance of communication overlap and scheduling
overhead, task blocking to fit caches) or an algorithmic requirement (e.g. sufficiently fine granularity for load
balancing). Recent DARMA-Kokkos integration now allows over-decomposition on a per-node basis, rather
than per-core. This greatly minimizes task scheduling overheads and can improve communication throughput
(surface area-to-volume considerations). This further improves load balancing flexibility by allowing DARMA
to control not only the number of tasks per node but the number of cores allocated to each task.

Exascale Computing Project (ECP) 40 ECP-RPT-ST-0001-2018

Not all runtimes provide
the same functionality

Application

DARMA

Runtime

OS/Hardware

Common API
across runtimes

Common API
across runtimes

Front End API
(Application User)

Translation Layer

Back End API
(Specification for Runtime)

Glue Code
(Specific to each runtime)

Figure 14: DARMA software stack model showing application-level code im-
plemented with asynchronous programming model (DARMA header library).
Application-level semantics are translated into a task graph specification via
metaprogramming in the translation layer. Glue code maps task graph specifica-
tion to individual runtime libraries. Current backend implementations include
std::threads, Charm++, MPI + OpenMP, and HPX.

Recent Progress DARMA constructs are being used in the development of ATDM applications, including
particle-in-cell (as part of EMPIRE), multiscale physics (in the ATDM tech demonstrator), and contact
applications. MPI interoperability constructs have been defined and recently implemented. DARMA has
integrated with Kokkos, providing support for data-parallel tasks.

Next Steps The next steps are pursuing both continued adoption in further applications, continued
implementation of the programming model with additional backends, and continued improvement of the
MPI + OpenMP reference implementation. For application adoption, a major focus will be using the MPI
interoperability constructs to interface Trilinos solvers with DARMA kernels. Code improvements of the
MPI reference implementation will focus on more load balancing heuristics, performance and correctness
debugging, and demonstration at increasing scales on capability platforms like Trinity, Cori, and Sierra.
DARMA is also active on the C++ standards committee, particularly for the parallelism technical specification.
DARMA-inspired library features are being actively proposed and considered.

Exascale Computing Project (ECP) 41 ECP-RPT-ST-0001-2018

4.1.6 xGA

Overview The xGA project is focused on improving the performance, scalability, and user productivity of
the Global Arrays (GA) library for exascale systems. This is essential to the ECP applications that already
depend on GA such as NWChemEx[10], GAMESS[11] and GridPACK[12] (used as part of the Stochastic
Grid Dynamics project). In addition, GA is being considered for use in the ECP application QMCPACK[13].

GA supports a shared memory-like programming model on distributed memory platforms. This allows
users to create distributed multidimensional arrays that can be accessed from any processor using simple
one-sided put/get/accumulate communication primitives. Data consistency is maintained using global
synchronization mechanisms that flush all outstanding communication from the system and guarantee that
arrays are in a known state. We are extending the GA library in a number of ways to take advantage of
exascale architecture features including deep memory hierarchies and accelerators, while continuing to tune
and improve the performance of the GA runtime.

Key Challenges Application codes increasingly need to take advantage of emerging hardware features to
support more sophisticated scientific models. These hardware features extend the computing model beyond
the concept of one compute thread per communication process as well as extending the memory model beyond
the idea of a single flat view of data. Some of these Exascale platform features include massively multi-core
CPUs, improved network communication speeds, the availability of GPU accelerators, and deep memory
hierarchies. Any one or more of these capabilities promises to accelerate application codes, so long as these
features are supported by the underlying runtimes and are accessible through easy-to-use interfaces.

Partitioned Global Address Space (PGAS) models have emerged as a popular alternative to MPI models
for designing scalable applications. These are typically paired with a one-sided communication model and are
particularly well-suited for applications with irregular access patterns that are not easily predicted in advance.
Though MPI implementations are modernizing with features such as GPUDirect technology, PGAS models
have not maintained similar advances. Users are requesting that PGAS models provide similar, seamless
features for addressing and communicating with memory that may be located anywhere within the memory
hierarchy, including memory resident on accelerators. They are also interested in using communication calls
from multiple independent threads within a single traditional communication process. The lack of a consensus
model for deep memory hierarchies makes developing a single interface for exploiting these by GA extremely
difficult. Supporting multi-threaded applications in a robust and efficient manner is also likely to require
significant software engineering in order to remove locks and achieve high performance.

Solution Strategy The xGA project has three primary thrusts:

1. Thread safety: GA has not previously provided any thread safety features or specification.

2. Deep memory: Users should provide hints to allocate GA memory anywhere within the memory
hierarchy, including NVMe and GPUs.

3. Application integration: Any new feature should directly benefit one or more ECP applications.

Recent Progress

1. Thread safety: GA has not previously provided any thread safety features or specification. We have
recently implemented a preliminary strategy for thread safety that puts locks on all communication
calls. In principle, this could be fairly efficient, since communications calls are not all occurring at the
same time, but the overhead of creating and destroying the locks themselves seems to be a severe drag
on performance. We are currently reviewing individual calls to remove global variables where possible
with a view to creating lock-free versions of these calls that can be used by a multi-threaded application.

2. Deep memory: We have begun looking at developing a strategy for creating GAs on GPU memory.

3. Application integration: GA is used in three applications currently supported by ECP. These include
NWChemEx (via the TAMMS runtime layer), Stochastic Grid Optimization (via GridPACK) and
GAMESS. We are also in discussions with QMCPACK application about using GA to support large

Exascale Computing Project (ECP) 42 ECP-RPT-ST-0001-2018

distributed lookup tables of spline coefficients. We expect that QMCPACK, as well as potentially
NWChemEx, would benefit from a read-only property that we have been working on within GA. We
are also discussing with NWChemEx how to potentially use thread-safe calls in GA as well as exploiting
the deep memory hierarchy.

4. Data layout: We have developed new options for controlling the data layout within GAs. The
internal routines for accessing both local and remote data have been completely reorganized to use an
iterator model that has eliminated a lot of redundant code in the current implementation. It has also
allowed us to implement a new ’tiled’ array option guarantees that data is laid out in user-controlled
blocks that are contiguous in memory. These layouts match layouts that are being considered by
some of the linear algebra libraries and provide options for optimizing communication by eliminating
strided communication calls. We have also begun a preliminary implementation of a sparse data layout
designed to support sparse 2D array operations. We have used this to implement a sparse matrix-vector
multiplication operation.

5. Improved Performance: We are continually evaluating and improving our performance. Figure 15
shows how we recently improved the bandwidth of our strided get operation in our 5.7 release of the
Progress Rank ComEx runtime[14].

Figure 15: Improved performance of strided get in the 5.7 release series.

Next Steps Our next steps are:

1. Add hints targeting memory hierarchy allocation: xGA will expand its array property types
allowing users to specify where memory should be allocated. We will also continue to refine the read-only
property to include caching of requests so that we can expand the property to handle very large arrays.
Currently, the property is limited to arrays that can be stored on a single node.

2. Improved thread-safe performance: We will improve our thread-safe performance by eliminating
the use of globally shared variables and the locks that surround one-sided GA operations. In some cases,
it may not be possible to implement thread-safe solutions without locks with the existing interface. In
these cases, we will look to extending the interface to provide thread-safe alternatives that will deliver
high performance.

Exascale Computing Project (ECP) 43 ECP-RPT-ST-0001-2018

4.1.7 ISC4MCM (RAJA)

Overview. The Integrated Software Components for Managing Computation and Memory Interplay at
Exascale (ISC4MCM) project is providing software libraries that enable application and library developers
to meet advanced architecture portability challenges. The project goals are to enable writing performance
portable computational kernels and coordinate complex heterogeneous memory resources among components
in a large integrated application. These libraries enhance developer productivity by insulating them from
much of the complexity associated with parallel programming model usage and system-specific memory
concerns.

The software products provided by this project are three complementary and interoperable libraries:

1. RAJA: Software abstractions that enable C++ developers to write performance portable (i.e., single-
source) numerical kernels (loops).

2. CHAI: C++ “managed array” abstractions that enable transparent and automatic copying of applica-
tion data to execution memory spaces at run time as needed based on RAJA execution contexts.

3. Umpire: A portable memory resource management library that provides a unified high-level API for
resource discovery, memory provisioning, allocation, access, operations, and introspection.

Capabilities delivered by these software efforts are needed to manage the diversity and uncertainty
associated with current and future HPC architecture design and software support. Moving forward, ECP
applications and libraries need to achieve performance portability: without becoming bound to particular
(potentially-limiting) hardware or software technologies, by insulating numerical algorithms from platform-
specific data and execution concerns, and without major disruption as new machine, programming models,
and vendor software become available.

These libraries in development in this project are currently used in production ASC applications at
Lawrence Livermore National Laboratory (LLNL). They are also being used or being explored/adopted by
several ECP application and library projects, including: LLNL ATDM application, GEOS (Subsurface), SW4
(EQSIM), MFEM (CEED co-design), and SUNDIALS.

The software projects are highly-leveraged with other efforts. Team members include: ASC and ATDM
application developers, ASD tool developers, university collaborators, and vendors. This ECP ST project
supports outreach to the ECP community and collaboration with ECP efforts.

Key Challenges. The main technical challenge for this project is enabling production applications to
achieve performance portability in an environment of rapidly changing, disruptive HPC hardware architecture
design. Typical large applications contain O(105)−O(106) lines of code and O(10K) loop kernels. The codes
must run efficiently on platforms ranging from laptops to commodity clusters to large HPC platforms. The
codes are long-lived and are used daily for decades, so they must be portable across machine generations. Also,
the codes are under continual development, with a steady stream of new capabilities added throughout their
lifetimes – continual validation and verification is essential, which precludes substantial rewrites from scratch.
Lastly, the complex interplay of multiple physics packages and dozens of libraries makes it so that the data
required for the full set of components needed for a given simulation may not fit into a single system memory
space. To advance scientific computing capabilities, applications must navigate these constraints while facing
substantial hardware architecture disruption along the road toward Exascale computing platforms.

While the software provided by this project has a substantial user base at LLNL, achieving broader
adoption in the ECP (projects without LLNL involvement, in particular) is another challenge. The software
efforts are funded almost entirely by LLNL programs and the majority of their developers work on LLNL
application projects. So resource limitations is a key issue.

Solution Strategy. The software libraries in this project focus on encapsulation and application-facing
APIs to insulate users from the complexity and challenges associated with diverse forms of parallelism and
heterogeneous memory systems. This approach allows users to exploit new capabilities with manageable
rewriting of their applications.

RAJA provides various C++ abstractions for parallel loop execution. It supports: various parallel
programming model back-ends, such as OpenMP (CPU multithreading and target offload), CUDA, Intel

Exascale Computing Project (ECP) 44 ECP-RPT-ST-0001-2018

Threading Building Blocks, etc.; loop iteration space and data view constructs to reorder, aggregate, tile, and
partition loop iterations; complex loop kernel transformations for optimization, such as reordering loop nests,
fusing loops, etc. RAJA also supports portable atomic operations, parallel scans, and CPU and GPU shared
memory. After loops have been converted to RAJA, developers can explore implementation alternatives via
RAJA features without altering loop kernels at the application level.

CHAI provides C++ “managed array” abstractions that automatically copy data to execution memory
spaces as needed at run time based on RAJA execution contexts. Access to array data in loop kernels looks
the same as when using traditional C-style arrays.

Umpire provides a portable API for managing complex memory resources by providing uniform access to
other libraries and utilities that provide system-specific capabilities. Umpire decouples resource allocation
from specific memory spaces, allocators, and operations. The memory introspection functionality of Umpire
enables applications and libraries to make memory usage decisions based on allocation properties (size,
location, sharing between packages, etc.)

All three software libraries are open source and available on GitHub [15, 16, 17]. There they provide
regular software and documentation releases. Each project has dedicated email lists, issue tracking, test
suites, and automated testing.

Recent Progress In FY18, CHAI and Umpire have been released as open source software projects and
they are now developed on GitHub Recent development has focused on user documentation and cleaner
integration of these two libraries to give applications more flexible and easy access to their capabilities.

Many new features have been added to RAJA in FY18 to enable flexible loop transformations for
complex loop kernels via execution policies. LLNL applications are assessing this new functionality now in a
”pre-release” version; it will be generally available before the end of FY18.

The RAJA Performance Suite [18] was released and made available on Github in January 2018. The Suite
is used to assess and track performance of RAJA across programming models and diverse loop kernels. It is
also being used for compiler acceptance testing in the CORAL procurement and was prepared for use as a
benchmark for the CORAL-2 procurement.

In 2018, the RAJA project expanded its visibility beyond DOE NNSA Labs. Recent presentations include
a RAJA tutorial at the 2018 ECP Annual Meeting and an application use case study the 2018 NVIDIA GPU
Tech Conference (GTC). Future tutorials are planned at 2018 ATPESC and GTC 2019. Also, a RAJA paper
and 1/2-day tutorial proposal were submitted to SC18.

Next Steps Our next efforts include:

1. Fill RAJA Gaps: Not all features are available for all programming model back-ends; as models
mature, such as OpenMP4.5, these gaps will be filled.

2. Expand RAJA User Guide and Tutorial: Build example codes and user documentation for latest
RAJA features and prepare for future tutorials (ATPESC 2018 and SC18).

3. Expand RAJA Performance Suite: Include kernels that exercise more application use cases and
RAJA features.

4. Focus RAJA Vendor Interaction: Work with CORAL vendors to address issues as applications
port to the Sierra platform at LLNL; establish early interactions with CORAL-2 vendors to ensure
RAJA will be supported well on CORAL-2 systems.

5. CHAI-Umpire Integration: Enable applications to customize CHAI array allocations; e.g., to use
memory pools for temporaries.

6. Expand Umpire Capabilities: Explore potential collaboration with relevant ECP efforts, such as
SICM project.

Exascale Computing Project (ECP) 45 ECP-RPT-ST-0001-2018

4.1.8 Exascale MPI

Overview MPI has been the de facto standard programming model for HPC from the mid 90’s till today, a
period where supercomputing performance increased by six orders of magnitude. The vast majority of DOE’s
parallel scientific applications running on the largest HPC systems use MPI. These application codes represent
billions of dollars of investment. Therefore, MPI must evolve to run as efficiently as possible on Exascale
systems. Our group at Argonne developed a high-performance, production-quality MPI implementation,
called MPICH. The focus areas of the Exascale MPI / MPICH project are: (1) continuous improvement of
the performance and capabilities of the MPICH software to meet the demands of ECP and other broader
DOE applications, (2) coordinate vendor and supercomputing center interactions to ensure efficient solutions
to applications, and (3) be involved in the MPI forum and standardization efforts to ensure continuity of the
work beyond this project.

Key Challenges While we believe MPI is a viable programming model at Exascale, both the MPI
standard and MPI implementations have to address the challenges posed by the increased scale, performance
characteristics and evolving architectural features expected in Exascale systems, as well as the capabilities
and requirements of applications targeted at these systems. The key challenges are:

1. Interoperability with intranode programming models having a high thread count [19, 20, 21] (such as
OpenMP, OpenACC and emerging asynchronous task models);

2. Scalability and performance over complex architectures [22, 23, 21, 24] (including high core counts,
processor heterogeneity and heterogeneous memory);

3. Software overheads that are exacerbated by lightweight cores and low-latency networks;

4. Enhanced functionality (extensions to the MPI standard) based on experience with applications and
high-level libraries/frameworks targeted at Exascale; and

5. Topics that become more significant as we move to the next generation of HPC architectures: memory
usage, power, and resilience.

Solution Strategy The Exascale MPI project has the following primary technical thrusts: (1) Perfor-
mance and Scalability (2) Heterogeneity (3) Topology Awareness (4) Fault Tolerance and (5)
MPI+X Hybrid Programming.

Our solution strategy started by addressing performance and scalability aspects in MPICH related to
network address management [25]. Apart from this, we also looked at communication strategies which allow
the MPI library to be as lightweight as possible [26, 27]. Other ongoing solutions include investigation and
evaluation of communication relaxation hints, investigation of optimizations to memory scalability in MPICH
and improvements to MPI RMA operations.

Exascale MPI heterogeneity efforts [28, 29, 30] started with the survey on heterogeneous memory archi-
tectures on upcoming DOE machines and how MPICH can take advantage of them [31]. The ongoing efforts
include the investigation of utilizing heterogeneous memory inside the MPI implementation and evaluation of
applications.

Exascale MPI topology awareness efforts [32, 33] originated with the investigation and evaluation of hints
based on topology awareness and optimizations to virtual topology functionality in MPICH [34, 35]. The
ongoing efforts include investigation of topology-aware collectives and neighborhood collectives in MPICH
[36] and evaluation of the selected ECP applications.

Exascale MPI fault tolerance efforts [37, 21] started with support for handling noncatastrophic errors
in MPI. The second effort included defining the scope of errors in MPI, a prerequisite for user-level failure
mitigation (ULFM). Other efforts that we are looking at in this direction are standardizing ULFM in MPI
and evaluating application suitability for fault tolerance.

Exascale MPI+X hybrid programming developed firstly with effort in improving interoperation of MPICH
with threads [38]. Secondly, we included support for interaction of MPICH with user-level thread (ULT)
libraries [39], primarily targeting Argobots and the BOLT runtime and the work-queue data transfer model
for multithreaded MPI communication. Other issues that are being looked at include the investigation and
evaluation on interaction between MPI and OpenMP and the study and evaluation of MPI endpoints.

Exascale Computing Project (ECP) 46 ECP-RPT-ST-0001-2018

Recent Progress Figure 16 provides the details of the milestones completed in FY18Q1 and FY18Q2.
Milestones completed in December 2017 include: (1) classifying what noncatastrophic errors; when noncatas-
trophic errors occur (e.g., upon exhaustion of resources), our implementation informs the user of the error
without disrupting MPI functionality. (2) topology-aware communicator split for NUMA, cache, and other
on-node hardware resources, as well as for storage systems [34, 35], such that the newly created communicators
are local to processes sharing hardware resources. (3) error scope definition as a prerequisite for user-level
failure mitigation; we clarified how errors should be handled when they are not attached to a communicator,
window, or file.

Non-catastrophic Errors

.

.

.

. .
.Rank 0

Rank 1

Rank 2

Rank n-1

Non-catastrophic
Error

of requests > Total
requests allowed

MPI_Wait ()

Allows user to change the #
of requests than aborting

Rank 0 Rank 1

Rank 2 Rank 3

NUMA 0
NUMA 1

M
PI

_C
om

m
_s

pl
it_

ty
pe

(S

ha
re

d
M

em
or

y,
 N

U
M

A)

Communicator

Rank 0 Rank 1

NUMA 0
Communicator 1

Rank 2 Rank 3
NUMA 1

Communicator 2

Communicator Creation Hints based on
Topology Awareness

Optimizations to Virtual Topology Functionality

1K 2K 4K
0

10

20

30

40

Ov
er

he
ad

 (s
)

Number of Processes

δ=0.05 δ=0.1 δ=0.2
δ=0.4 δ=0.6 δ=0.8

Phase 1 overheads for the sparse random graph topology
across different number of processes

Improved Support for Heterogeneous Memory

0

100

200

300

400

500

600

mallochexe mallochexe mallochexe

512x256x256 512x512x256 512x512x512

R
un

tim
e

 Mat-struc-gen FE assembly Total CG Other

Results for the miniFE miniapp on KNL

Work-Queue Data Transfer Model

262144

524288

1048576

2097152

1 4 16 64 256 1024 4096

D
at

a
Tr

an
sf

er
 R

at
e

(C
hu

nk
s/

s)

Data Chunk Size (Bytes)

MS-WorkQ Original

0

100

200

300

400

500

600

mall
oc

men
kin

d
he

xe
mall

oc

mem
kin

d
he

xe
mall

oc

mem
kin

d
he

xe

R
un

tim
e

 Mat-struc-gen FE assembly Total CG Other

0
100K
200K
300K
400K
500K
600K
700K
800K

8 16 32 64 128 256 512 1024 2048

M
es

sa
ge

R
at

e
(m

sg
/s

)

Number of Usable Requests

1:191 MPI_Isend/MPI_Irecv (OFI/PSM2)
Prototype Rlimit=8 Rlimit=16 Rlimit=32
Rlimit=64 Rlimit=128 Rlimit=256 Rlimit=512
Rlimit=1024 Rlimit=2048

Communication Behavior Hints

MPI_Recv(rank)

hash(rank)

TX

No overtaking Allow overtaking

mpi_assert_no_any_source mpi_assert_allow_overtaking

RX RX RX TX TX TX

Figure 16: The details of MPICH milestones completed in FY18Q1 and FY18Q2

Milestones completed in March 2018 include: (1) investigating the memory subsystem of future ECP
machines to understand the possible memory architectures; we presented and evaluated Hexe, our new
framework that improves both the flexibility and portability of memory allocation and management of
heterogeneous memory compared with other memory allocation tools such as malloc and memkind [31].
(2) designing the interface and algorithm for remapping processes and nodes according to the topology or
allocating resources based on application communication patterns, in terms of MPI graph and Cartesian
functions. (3) work-queues to hold work descriptors of work-generating threads; this approach decouples
work-generating threads from completion-waiting ones and avoids interference between them.

Next Steps Several follow-on efforts are planned for the project:

1. Performance and Scalability: Exascale MPI efforts include investigation and evaluation of com-
munication relaxation hints, investigation of optimizations to memory scalability in MPICH and
improvements to MPI RMA operations.

2. Heterogeneity: Exascale MPI efforts include the investigation of utilizing heterogeneous memory
inside the MPI implementation and ECP application performance evaluation of utilizing heterogeneous
memory inside the MPI implementation.

3. Topology Awareness: Exascale MPI efforts include the analysis of the performance evaluation
of the implementation of virtual topology functionality, investigating topology-aware collectives and
neighborhood collectives in MPICH and evaluate the selected ECP applications.

4. Fault Tolerance: Exascale MPI effort is to investigate for fault tolerance with the focus on evaluating
applications suitability for ULFM in MPI, to focus on the standardization of ULFM in MPI and finally,
investigate and evaluate the implementation of MPI-4 ULFM proposal in MPICH.

5. MPI+X Hybrid Programming: Exascale MPI efforts include the investigation and evaluation on
interaction between MPI and OpenMP, to investigate a study of the benefit potential of the MPI
endpoints approach and evaluate it with selected ECP applications.

Exascale Computing Project (ECP) 47 ECP-RPT-ST-0001-2018

4.1.9 Legion

Overview The Legion project focuses on the development of the Legion runtime system and programming
model. Our focus is on providing the base capabilities of an alternative task-based programming model that
seeks to improve the amount of available parallelism and enable a separation of concerns of the implementation
of a task from how that task and its associated data are mapped onto a given system architecture. Our
efforts have focused on addressing bugs and adding new features to the implementation but also supporting
applications that are interested in or already using Legion.

The Legion programming system is freely available via an open source license on the GitLab site:
https://gitlab.com/StanfordLegion/legion.

Key Challenges Legion focuses on providing a programming model and supporting implementation that
will help address the challenges applications will face in realizing sustained performance on what are projected
to be the nature of Exascale systems. Increased scales combined with the challenges of programming
potentially diverse accelerator and node-level processor technologies are responsible for a significant challenge
that has yet to be fully addressed by today’s most prominent programming systems – none of which have
been fully validated on yet-to-be-determined system architectures for the Exascale era of computing.

Solution Strategy In funded collaboration between Los Alamos and Stanford University we are providing
not only the implementation of the Legion programming model but also numerous opportunities for application
developers and participants in the ECP PathForward efforts to learn about Legion and data-flow and task-
based approaches to programming. We also closely work with Combustion-Pele (AD 2.2.2.02) and the
data analytics efforts in support of ExaFEL (AD 2.2.4.05) to provide bug fixes, performance optimizations
and implementation help. We work with these applications and are exploring Legion with a few others,
and in collaboration with the LANL ATDM Programming Models and Runtimes project (ST 2.3.1.02), to
identify needs and missing features in the programming model and runtime implementation. In addition,
we also look at numerous aspects of having the Legion system interoperate with today’s more widely used
programming systems – e.g. MPI and OpenMP. This is critical in terms of providing a path for adoption and
experimentation to occur in a more productive fashion. Finally, we are also actively exploring techniques for
simplifying Legion programming to help assist in not only potential adoption but also in helping to educate
the broader community about the programming model and its advantages on Exascale-class systems.

Recent Progress Our most recent progress has been devoted to getting the S3D DNS combustion
application running on the Summit system at OLCF and the Piz Daint system at the Swiss National
Supercomputing Centre. This work is utilizing the most recent version of Legion with a goal of both bug,
scaling and overall performance enhancements. This effort is an update that covers new science relative to our
previous work that has recently been published [40]. At present the full set of performance and application
characteristics for this effort are still being analyzed and in particular, issues encountered on Summit are
being discussed with OLCF staff. A early look at rough numbers suggest anywhere from a 26 to over 100X
boost in performance over the production (MPI-based) version of S3D. Additional Legion features worked on
in collaboration with LANL’s ATDM efforts (ST 2.3.1.02) have resulted in much improved scaling capabilities
due to reduced runtime overheads in comparison to past work.

Figure 17 on the following page, shows the task graph for a single time step on one node of the Legion
implementation of S3D simulating an n-dodecane reaction. We hope to soon be able to release a more detailed
analysis of the new Legion-S3D runs.

Next Steps We will continue to focus on improving the interoperability of Legion with other programming
systems, simplifying the programming API for the Legion runtime to improve both our educational outreach
as well as developer productivity, have regular open source releases of Legion and also work with application
teams for debugging, feature improvements and performance tuning. In addition we are actively monitoring
the emerging hardware technology components that are potential targets for use in the Exascale systems that
will be eventually deployed by both the DOE Office of Science and the NNSA.

Exascale Computing Project (ECP) 48 ECP-RPT-ST-0001-2018

https://gitlab.com/StanfordLegion/legion

Figure 17: The Legion task graph for a single time step on a single node. The
S3D configuration in this example is simulating n-dodecane chemistry reactions
in addition to the direct numerical simulation of the turbulent flow.

Exascale Computing Project (ECP) 49 ECP-RPT-ST-0001-2018

4.1.10 Distributed Tasking at Exascale: PaRSEC

Overview The PaRSEC Environment provides a runtime component to dynamically execute on hetero-
geneous distributed systems, and a productivity toolbox that comprises a development framework for the
support of multiple domain specific languages (DSLs) and extensions, with debugging, trace collection, and
analysis tools. The PaRSEC project team is dedicated to solving two challenging and interdependent problems
facing the ECP developer community: First, how we create an execution model that enables developers to
express as much parallelism as possible in their applications, so that those applications effectively utilize
the massive collection of heterogeneous devices that ECP machines will deploy. Second, how we ensure
that that execution model is flexible and portable enough to actually increase the scientific productivity of
those same application developers, not only for the ECP target environments but for the foreseeable future.

Figure 18: PaRSEC architecture

PaRSEC is an open source, community-
based implementation of a generic task-
based runtime that is freely available, and
used by an increasing number of soft-
ware libraries. The PARSEC develop-
ment team is mainly comprised of re-
search staff at UTK, but regular contri-
butions from the community are provided
via our presence on GitHub and Bitbucket
The project focuses on prototyping differ-
ent approaches to define task-based lan-
guages that will be able to exploit the
full range of capabilities of Exascale plat-
forms. Without such a project, and based
on the current state of task-based run-
times, potential users will be stuck either
in fixed programming boundaries, or with
particular programming languages. The
DTE project provides means to maintain
a high competitiveness in the field lead-
ing to more innovation on addressing the

challenges we are facing toward scalable, performant and Exascale ready programming paradigms.

Key Challenges As we approach Exascale, a number of aspects of the hardware and software environment
pose challenges. First and foremost, keeping pace with the architectural changes on current and future
machines requires changes not only on how we take advantage of the hardware capabilities, but how we reshape
our algorithms and applications to expose enough parallelism to maximize the use of the underlying hardware.
The number of nodes, threads per node, memory hierarchies and support for increased computational
capabilities (accelerators) will continue to increase, while the currently available programming paradigms are
still struggling with parallelism at the node level.

Solution Strategy The approach followed in PaRSEC is to provide a low-level, flexible and dynamic
runtime able not only to schedule tasks at the node level, but to handle data transfers between different
memory (both inter and intra nodes), memory hierarchies, heterogeneous architectures with support for
accelerators with a simple programming scheme. The proposed approach envisions a middle-ground solution,
addressing both hardware and software challenges. At the hardware level a team of dedicated developers
extends PaRSEC to map it’s capabilities to the hardware and to improve it’s scalability and performance.
At the upper level the interaction with the users is through building Domain Specific Languages with the
target domain scientists in mind, that will facilitate the expression of algorithmic parallelism with familiar
constructs mapped on the exposed low-level capabilities.

Recent Progress The runtime system of PaRSEC has been extended to provide a better support of
dynamic task pools (DAGs of tasks), opening the runtime to new classes of algorithms, such as those where

Exascale Computing Project (ECP) 50 ECP-RPT-ST-0001-2018

the total number of tasks is a priori unknown. We enabled such dynamic DAGs by removing internal
constraints on how tasks are identified and how dependencies are tracked. However, one of the missing
capabilities, the detection of the application termination, needed to be provided explicitly. We added a set of
termination detection algorithms to remove this step with better efficiency, and providing a complete solution
to handling dynamic DAGs.

An important aspect of the DTE project is to define and prototype scalable domain specific languages
that enable a productive expression of parallelism for end-user communities. PaRSEC presents multiple
programming interfaces (Parameterized Task Graphs for maximum parallelism, the popular serial task insertion
dataflow model to provide direct access to the runtime). In addition the DTE team is in close contact with
application teams to define parallel abstractions that are suitable for their domain usage. Notably, the
PaRSEC team has ongoing collaboration with the SLATE linear algebra package and NWChemEx chemistry
package teams. The PaRSEC development team did the first step toward the integration of their framework
into the SLATE (2.3.3.09) in the context of the shared milestone (STPM11-23). The first prototype of the
application ran in a distributed environment and showed the capability of the SLATE library using a modern
fully capable runtime system. This work involved enhancing the insert task interface available in the ParSEC
runtime to map onto the logic of a SLATE algorithm.

20000 40000 60000 80000 100000 120000
Size(N)

0

1000

2000

3000

4000

5000

6000

Gf
lo

ps

Cholesky, 64 Nodes(Phi), 12 cores each, Tile=320, Block=64, L=1, CPU only, 8x8, 32x24

SLATE
DPLASMA_DTD
SLATE_DTD

DPLASMA
ScaLAPACK_OMP
ScaLAPACK_IMP

Figure 19: PaRSEC architecture

In figure 19, we compare the integration of
SLATE and PaRSEC against the state of the art.
First against the two legacy domain specific lan-
guages that have the capability to do linear algebra;
then against the regular SLATE using OpenMP for
intra-node parallelism, and MPI for communication;
and finally against ScaLAPACK, which is the refer-
ence for distributed linear algebra.

On the software quality side, the PaRSEC run-
time has been evaluated and amended to compile
and run on all major target pre-Exascale platforms
(ALCF Mira, Theta; OLCF Titan, Summit-dev).
In particular the detection of architecture specific
features on NVIDIA V100 accelerators and Power
processors has been improved. PaRSEC now in-
cludes a Spack definition file to ease the deployment

on future target systems as part of the system software SDK effort.

Next Steps A major effort at refactoring the accelerator and GPU component of the PaRSEC runtime
is ongoing. The new runtime component handles memory transfers to/from accelerators as schedulable
completion events that can trigger asynchronously the next step of the accelerated task and/or dependent
tasks. The new engine is modular, one of the component provides a CUDA backend optimized for NVIDIA
accelerators, and a new component will provide an OpenMP target backend for portability to other hardware.

We are improving the performance characterization system of PaRSEC to enable users to get detailed
information on the performance of their applications that use PaRSEC as a runtime system. Part of this
effort is shared with the development of Software Defined Events in ExaPAPI and the integration within the
PaRSEC runtime.

The PaRSEC runtime will be augmented with the capability for any task to decide that a given algorithm
has no more reason to be executed. This feature requires the runtime to properly remove any trace of the
algorithm without going into extreme solutions. We do not want to dry run the algorithm without actually
executing anything, and we do not want to remove the task from the runtime without any consideration for
the other nodes. The solution will have to be a local decision that will leave the runtime in a coherent state
without impeding the performance with the execution of useless tasks.

The detection of collective pattern at the runtime level is a hard problem. To enhance the insert task
interface, the PaRSEC development team will provide a communication API. It will give the developer the
capability to express communication where and when it seems fit during the algorithm.

Exascale Computing Project (ECP) 51 ECP-RPT-ST-0001-2018

4.1.11 Kokkos Support

Overview Kokkos Support provides documentation, training and community building support for the
Kokkos programming model. To that end, the project develops programming guides, API references and
tutorial material for Kokkos which is presented both as independent events and at conferences such as
Supercomputing. Kokkos Support is also responsible for setting up community interaction channels such as
the Slack channels now used for user communication and fostering the GitHub interactions between Kokkos
developers and users. Finally, the project supports engagement with the C++ standard in order to further
the adoption of successful Kokkos concepts into the core language.

Key Challenges For a new programming model to be successful, a comprehensive support and training
infrastructure is absolutely critical. Prospective users must learn how to use the programming model, current
users must be able to bring up issues with the development team and access detailed documentation, and the
development team of the model must be able to continue technical efforts without being completely saturated
with support tasks. The latter point became a significant concern for the Kokkos team with the expected
growth of the user base through ECP. Already before the launch of ECP, there were multiple application or
library teams starting to use Kokkos for each developer on the core team – a level not sustainable into the
future without a more scalable support infrastructure. This issue was compounded by the fact that Kokkos
development was funded through NNSA projects, making it hard to justify extensive support for open science
applications.

Solution Strategy Kokkos Support addresses these challenges through a number of ways. First and
foremost, it provides explicit means for supporting all DOE ECP applications. A main component of that is
funding for local Kokkos experts at the Sandia, Oak Ridge and Los Alamos laboratories which can serve
as direct contacts for local applications and, in Oak Ridge’s case, for users of the Oak Ridge Leadership
Computing Facility. Secondly, the project develops a reusable support infrastructure, which makes supporting
more users scalable and cost effective.

The support infrastructure consists of GitHub wiki pages for the programming guide and an API
reference, GitHub issues to track feature requests and bug reports, a Slack channel for direct user-to-user and
user-to-developer communication, and tutorial presentations and cloud-based Kokkos hands-on exercises.

Recent Progress Kokkos Support has successfully run multiple Kokkos bootcamps for DOE applications
as well as organized a number of single day tutorials. At the most recent tutorial during the DOE ECP All
Hands meeting, the new cloud-based hands-on infrastructure was used for the first time, allowing tutorial
attendees to use GPUs on remote servers without the hassle of temporary user account administration at
DOE computing facilities. The project also improved existing documentation and transferred it to GitHub
wiki pages which are tailored for software documentation and more maintainable. The Slack channels usage
is growing, which have seen participation from users across the DOE and Kokkos community. There are also
more interactions on GitHub issues, including a number of pull requests volunteered from external users as a
result of these interactions to improve small parts of the Kokkos implementation. These latter two points are
a sign that the community is growing and more actively participating in advancing Kokkos, a necessary step
for a more sustainable future where users may answer other users questions, and the community begins to
provide new features and solutions to problems.

Next Steps There are two main thrusts of development underway: the writing of a Kokkos API Reference
and the development of more advanced tutorials. While the Kokkos Programming Guide and the Tutorial
Presentations are well received, more advanced users often only want to look up the API of Kokkos features.
Such an API reference is not yet available. Its development is under way, and we hope to have it cover the
majority of Kokkos features by the end of Summer 2018.

For tutorials, feedback provided by attendees indicate that some of the material covered in the standard
tutorial is a bit too advanced for an introduction to Kokkos. On the other hand, as the number of users who
have had previous exposure to Kokkos is growing, they are asking for more of the advanced features to be
covered. To support both types of attendees, it is clear that splitting the tutorial into beginner and advanced
sections, as well as extending the advanced section beyond what is currently covered is necessary.

Exascale Computing Project (ECP) 52 ECP-RPT-ST-0001-2018

Finally, we would like to improve the accessibility of all of the resources that are being developed to
support Kokkos and increase its adoption. Currently, all documentation, tutorials, references, and support
channels are in various locations that are best suited to their differing format requirements. However, having
a one-stop landing page where new encounters can learn about the project and current users can find the
location of all available resources would increase usage of the various materials and communication channels
within the community, among both developers and users.

Exascale Computing Project (ECP) 53 ECP-RPT-ST-0001-2018

4.1.12 2.3.1.11 Open MPI for Exascale (OMPI-X)

Overview The OMPI-X project ensures that the Message Passing Interface (MPI) standard, and its
specific implementation in Open MPI meet the needs of the ECP community in terms of performance,
scalability, and capabilities or features. MPI is the predominant interface for inter-process communication
in high-end computing. Nearly all of the ECP application (AD) projects (93% [41]) and the majority of
software technology (ST) projects (57% [41]) rely on it. With the impending exascale era, the pace of change
and growing diversity of HPC architectures pose new challenges that the MPI standard must address. The
OMPI-X project is active in the MPI Forum standards organization, and works within it to raise and resolve
key issues facing ECP applications and libraries.

Open MPI is an open source, community-based implementation of the MPI standard that is used by a
number of prominent HPC vendors as the basis for their commercial MPI offerings. The OMPI-X team is
comprised of active members of the Open MPI community, with an extensive history of contributions to this
community. The OMPI-X project focuses on prototyping and demonstrating exascale-relevant proposals
under consideration by the MPI Forum, as well as improving the fundamental performance and scalability
of Open MPI, particularly for exascale-relevant platforms and job sizes. MPI users will be able to take
advantage of these enhancements simply by linking against recent builds of the Open MPI library.

Without the OMPI-X project, there will be less competition and less innovation in addressing the
needs of ECP users in the critical area of scalable, performant, and capable exascale-quality inter-process
communication capabilities.

Key Challenges A number of aspects of “exascale” levels of computing pose serious challenges to the
“tried and true” message passing model presented by MPI and its implementations, including Open MPI.
Keeping pace with changes in HPC architecture is a major challenge. The MPI ecosystem (the standard
and its implementations) needs to evolve to address challenges driven by architectural change, as well taking
advantage of new features and capabilities. As applications and libraries build up to exascale, the number of
node, processes, and threads required will rise significantly, whereas other key resources, such as memory
tend to go down on a per-node, -process, or -thread basis. This emphasizes the importance of scalability
in terms of both performance and resource utilization. Finally, we must work with in the much larger and
broader MPI community to find approaches to address these challenges which do not adversely impact the
capabilities, performance, or scalability for other users of MPI and Open MPI.

Solution Strategy The OMPI-X project is working across a number of fronts to address these challenges.
Runtime Interoperability for MPI+X and Beyond MPI is increasingly being used concurrently with

other runtime environments. This includes both “MPI+X” approaches, where X is most often a threading
model, such as OpenMP, as well as the use of multiple inter-process runtimes within a single application.
Concerns include awareness of other runtimes, cooperative resource management capabilities, and ensuring
that all concurrently active runtimes make progress. We will develop APIs and demonstrate capabilities for
interoperability in both MPI+X and multiple inter-process runtime situations.

Extending the MPI Standard to Better Support Exascale Architectures The MPI community is considering
for standardization a number of ideas that are particularly important to supporting the architectural and
system size characteristics anticipated for exascale. “Finepoints” and “Endpoints” deal with the growing use
of threading for node-level concurrency, in combination with MPI. “Sessions” increases the flexibility of MPI
semantics in a number of areas, which in turn can open opportunities for enhanced scalability, as well as
easier support for multi-component applications such as coupled multi-physics simulations. We will develop
prototype implementations and work with ECP teams to evaluate the ability of these approaches to address
ECP requirements in order to facilitate the standardization process.

Open MPI Scalability and Performance As we push the scale of both hardware and applications, we stress
MPI implementations and expose areas that need to be improved in order to improve scalability. OMPI-X
is targeting memory usage within Open MPI, as well as remote memory access (RMA), tag matching, and
other areas, for improvements in both scalability and performance.

Supporting More Dynamic Execution Environments We are developing and implementing strategies to
help MPI applications better deal with topological process layout preferences and contention in the network.

Exascale Computing Project (ECP) 54 ECP-RPT-ST-0001-2018

Resilience in MPI and Open MPI Concerns about system and application resilience increase as either
scales in size. We will provide implementations of the User-Level Fault Mitigation (ULFM) and ReInit
proposals currently under discussion within the MPI Forum, as well as demonstrations of their use, in order
to help drive standardization discussions, and to help ECP team understand how they can take advantage of
these capabilities to improve the resilience of their libraries and applications.

MPI Tools Interfaces Several interfaces within the MPI standard are primarily used to support performance
and correctness tools. The MPI Forum is in the process of making significant revisions and extensions to
these interfaces. We will track the discussions in the Forum and provide prototype implementations within
Open MPI to facilitate evaluation and provide feedback. We will work with the ECP community, including
tool developers, to make additional data available through the MPI T interface.

Quality Assurance for Open MPI We are enhancing the Open MPI testing infrastructure, adding tests to
reflect ECP requirements, and instantiating routine testing on systems of importance to ECP.

Recent Progress One of the first activities of the project was to conduct a survey of ECP AD and ST
projects to better understand their current and expected usage of MPI, and look for significant issues in the
MPI environment that we might have overlooked in our planning for the project. A paper describing the
survey results was presented at the ExaMPI 2017 workshop held in conjunction with SC17 [41], and will
appear in a special issue of Concurrency and Computing: Practice and Experience. The survey has generated
a great deal of interest in the MPI community, and there are plans to expand the scope to provide a better
characterization of MPI usage around the world.

We have delivered an implementation of the User-Level Fault Mitigation (ULFM) resilience approach,
which are under consideration by the MPI Forum for inclusion in the standard. ULFM provides the basic
building blocks for cheap, tailored recovery capabilities within applications and libraries using MPI. ULFM
imposes no overhead on raw communication performance on ECP-relevant hardware. We are now working
with several application teams to demonstrate the capabilities it provides.

Figure 20: Comparison of put (left) and get (right) RMA performance
in a multi-threaded context for Open MPI. Recent OMPI-X contributions
are reflected in version 4.0.0a1 (top group of lines), in comparison with
v2.1.3.

We expect to be working on scala-
bility and performance of Open MPI
throughout the project, but some early
successes have been demonstrated. We
have improved the RMA implementa-
tion so achieve performance levels com-
parable to those obtained only by high
tuned implementations by vendors and
significantly improved their performance
in multi-threaded contexts (Fig. 20). We
have also been able to improve message
matching by up to 2× generally, and
up to 45× on Intel Xeon Phi processors,
and we have made significant improve-
ment to performance when MPI is used
in a multi-threaded environment.

Early work with the prototype implementation of Finepoints shows improvements of 25% in communication
costs and 5% in overall execution time for one ECP mini-app. Open MPI support for the MPI T interface has
been extended [42] to provide a set of low-level counters to present a more detailed performance characteristics
map to tools and to users. Finally, we have deployed the MTT testing infrastructure used by Open MPI on
ORNL’s SummitDev and Summit platforms, as well as improving the MTT system itself.

Next Steps We are making progress across multiple fronts, some of which has been described above. In
FY18, we expect to complete our primary efforts in the area of resilience in Open MPI, an implementation of
the “ReInit” approach to complement the already completed User-Level Fault Mitigation (ULFM) capability.
Both approaches continue to be debated within the MPI Forum, but we are hopeful that demonstrations
based on our implementations can help bring these discussions to a conclusion. Early in FY19, we will also
be delivering a formal proposal and prototype implementation of the “Finepoints” approach to supporting
environments with large numbers of threads.

Exascale Computing Project (ECP) 55 ECP-RPT-ST-0001-2018

4.1.13 Runtime System for Application-Level Power Steering on Exascale Systems

Overview Power remains a critical constraint for Exascale. As we design supercomputers at larger scales,
power becomes an expensive and limited resource. Inefficient management of power leads to added operational
costs as well as low scientific throughput. Although hardware advances will contribute a certain amount
towards achieving high energy efficiency, they will not be sufficient, creating a need for a sophisticated system
software approach. Significant advances in software technologies are thus required to ensure that Exascale
systems achieve high performance with effective utilization of available power. Distributing available power
to nodes while adhering to system, job and node constraints involves complex decision making in software.

The ECP PowerSteering project is developing a job-level power management runtime system that will
optimize performance of Exascale scientific applications transparently under power and/or energy constraints.
Existing research efforts, including Conductor and Adagio, are being actively integrated into Intel’s GEOPM
runtime system, an ongoing open source effort led by Intel. This integration expands GEOPM?s capabilities
with the latest research while providing a production-grade, industry-supported open source solution. By
developing new platform plugins, this project also supports upcoming target platforms and paradigms for
ECP beyond the Intel architectures, and incorporates task-based programming models such as Legion. By
being both configurable and cross-platform, GEOPM will help applications achieve maximum performance
under a power constraint.

This project is essential for ECP because it enables Exascale applications to operate safely with optimal
performance under power and energy constraints. This project is also essential for building a sophisticated
hierarchical software stack proposed by the ECP Argo and ECP Flux projects. Additionally, the project
fulfills an essential need for ECP by enabling vendor and academic collaborations that provide for accelerated
adoption of best practices and better interoperability at scale. By leveraging the GEOPM software developed
in this project, compute centers can safely operate under power and energy constraints while maximizing
performance and scientific throughput.

Key Challenges Power management in software is challenging due to the dynamic phase behavior of
applications, processor manufacturing variability, and the increasing heterogeneity of node-level components.
While several scattered research efforts exist, a majority of these efforts are site-specific, require substantial
programmer effort, and often result in suboptimal application performance and system throughput. Addition-
ally, these approaches are not production-ready and are not designed to cooperate in an integrated manner.
A holistic, generalizable and extensible approach is still missing in the HPC community, and a goal for the
ECP PowerSteering project is to provide a solution for this technology gap.

Another set of challenges come from portability issues. Existing solutions are targeted toward specific
Intel microarchitectures as well as programming models. Additionally, some of the existing solutions violate
the specified power budget before reaching a steady state, resulting in power fluctuations as well as unsafe
operation. As part of this project, we strive to provide portability as well as safe operation using both
hardware-level and application-level information for adaptive configuration selection and critical path analysis.

Solution Strategy Our solution is to develop a job-level runtime system (Intel GEOPM) that can operate
transparently to user applications, and can also cooperate with HPC resource managers and node-level tools.
We are taking a two-pronged approach. First, we are working toward consolidating existing research efforts
from the community to develop high-quality plugins for GEOPM that can be deployed at Exascale. In parallel,
we are developing new algorithms in GEOPM to address other Exascale challenges such as heterogeneity
and variation. While GEOPM already provides some baseline algorithms, the existing capabilities are not
programmer transparent and not sufficient for Exascale. Our advanced algorithms analyze critical paths of
scientific applications transparently, balance power between different components intelligently, and provide
mechanisms to capture fine-grained application semantics through Caliper. Additionally, these advanced
algorithms will support non-Intel architectures such as IBM/NVIDIA and novel task-based programming
models such as Legion, which are critical for portability in the future. We also intend for GEOPM to be a
part of a holistic power management stack that does dynamic, hierarchical power management and works
closely with resource managers such as SLURM or Flux. In order to accomplish portability and smooth
integration, we are closely collaborating with ECP Argo and ECP Flux projects, with University of Arizona,
and with Intel and IBM.

Exascale Computing Project (ECP) 56 ECP-RPT-ST-0001-2018

Figure 21: Non-linear power-performance model in use for MG.C during config-
uration exploration phase for the runtime system

Recent Progress Recently, we achieved two milestones in March 2018. The first was to update the power
model for our plugin to incorporate application phases and manufacturing variation, and the second milestone
was to support task-based programming models in GEOPM. We developed an offline power/performance model
based on processor characterization over codes with broad spectrum of compute and memory-boundedness at
different processor power caps. We also updated the configuration space exploration to use this model to
adjust per-MPI rank performance measurements over each computation phase.

We are now working on testing and evaluation of our framework with the new model and collecting
new data on the Quartz cluster at LLNL. Some early results are presented in Figure 21. The figure shows
the compute phase of MG.C, where the runtime system uses a non-linear power-performance model during
the configuration exploration phase to account for manufacturing variability. For our second milestone,
we developed an MPI + Legion + GEOPM interoperability benchmark that allows us to use GEOPM for
dynamic power management of task-based models.

Next Steps We will continue our research and development work as planned toward the September 2018
milestones. More specifically, we are working on porting GEOPM to non-Intel architectures (IBM Power8
or Power9, and NVIDIA GPUs are candidates). We will also enhance our variation-aware and phase aware
model with advanced machine learning and statistical techniques. We also plan to improve the overhead of
the configuration exploration function by selecting configurations that minimize sampling overhead without a
significant impact on the prediction accuracy of the power model especially at lower power budgets.

One of our current challenges is to gain access to non-Intel architectures such as IBM Power8/Power9 and
NVIDIA GPUs with elevated privileges that are required for power management. We are working with LLNL
to gain such access. Additionally, for our Legion work, we are working toward understanding mappers as
well as task distribution better in order to determine the spatial and temporal aspects of power management
with GEOPM plugins. We are also looking into S3D application code as part of our Legion power model
exploration. Lastly, we are looking into adding Spack support for installing GEOPM.

Exascale Computing Project (ECP) 57 ECP-RPT-ST-0001-2018

4.1.14 SOLLVE

Overview OpenMP is a directive-based API for shared-memory and accelerator systems. It is supported
by a stable community of vendors, research labs, and academics who participate in the efforts of the OpenMP
Architecture Review Board; it is also the most used API for intra-node programming in ECP applications.
Implementations are available in all DOE LCFs, and a variety of programming tools are available to support
OpenMP application development. The mission of the SOLLVE project is to further enhance the OpenMP
specification and implementations to meet the performance and productivity goals of ECP applications. We
directly interact with DOE end-users in order to understand their application software requirements. We
will develop OpenMP solutions for ECP needs; propose features for standardization; produce prototype
implementations of new features to support their rapid adoption; develop and deliver a verification and
validation (V&V) suite to assess implementations and enable evaluations by DOE facilities, and deliver a
high-quality, robust ECP OpenMP implementation in the LLVM compiler framework. Attaining high levels of
single-node performance and meeting performance portability needs will only be possible via enhancements to
OpenMP in such areas as data motion and placement in complex memory hierarchies, efficiency in the context
of C++, and features that allow the creation of performance portable code. SOLLVE plays a critical role
in identifying, implementing, promoting, and deploying key functionality that will enable ECP application
developers to reach their goals using OpenMP. We will demonstrate the high impact of new features via their
use in selected ECP applications.

Key Challenges The SOLLVE project addresses a number of key challenges faced by DOE facilities,
application groups and scientists. The first of these is the gap between existing OpenMP functionality and
user requirements. This problem is largely exacerbated by ever increasing complexity and heterogeneity
of computing systems. The second challenge is to suitably evolve the OpenMP specification to satisfy the
identified requirements. This process involves coordinating with vendors and other members of OpenMP’s
language committee to reach consensus on the scope of the API, syntax and semantics of new features.
The third challenge addressed by the SOLLVE project is performance portability. Current hardware and
software trends [43] have shown that pre-Exascale and Exascale systems will be extremely heterogeneous,
and may consist of diverse architectures such as CPUs, GPUs, FPGAs, among others. Programmatically,
this means that memory hierarchies will be even deeper, and multiple levels and types of parallelism will
have to be exposed, extracted and mapped onto these systems to achieve suitable performance levels. This
naturally places heavy emphasis on application readiness, where APIs such as OpenMP will need to address
performance portability to serve the critical role of abstracting hardware and software complexities. Finally,
the last challenge is to fully assess the quality of delivered OpenMP implementations, their compliance with
the specification and potential divergence that, if unidentified, could can lead to undesired program behavior.

Solution Strategy The challenges discussed here are addressed by 5 major thrust areas, which we describe
below as part of the SOLLVE process:

1. Application requirements The first step of the SOLLVE process consists in collecting user re-
quirements from relevant and representative ECP applications (e.g. QMCPACK or Lattice QCD).
Collected requirements are then converted to use-cases which are then handed to the OpenMP Standard
Committee.

2. OpenMP specification evolution This thrust area is responsible of translating use-cases to new
OpenMP features to be introduced into the standard. In this phase, the semantics of the new capabilities
are defined and formalized, followed by early prototypes in one or more OpenMP implementations
(either vendor or open source solutions). Broadly, the bulk of new features fall into the areas of
accelerator, affinity, tasking or memory management.

3. Lightweight OpenMP runtime SOLLVE is committed to deliver an open source, lightweight and
scalable OpenMP implementation (the BOLT runtime) that will fulfill ECP needs. This deliverable
serves two key objectives: i) early access to a stable implementation; and ii) risk mitigation.

4. LLVM This compiler infrastructure is ideal for delivering high-quality and deployable OpenMP
implementations. Our effort enhances the LLVM framework by introducing compiler transformations

Exascale Computing Project (ECP) 58 ECP-RPT-ST-0001-2018

Application	
requirements	
• Collected	

MPI+OpenMP
affinity	
requirements	
and	use-cases	
for	memory	
management

• Launched	ticket	
system	for	user	
feedback/interac
tions

Standard	and	
Specification	
Evolution

• Face-to-face	
meeting	in	Austin	
(TX)	

• Significant	
progress	related	
to	tickets	and	
prototypes	of	
mappers,	deep	
copy,	concurrent	
construct

OpenMP
Scalable	
Runtime	

• Completed	
OpenMP runtime	
milestone

• Synchronized	
BOLT’s	
functionality	with	
LLVM	OpenMP
runtime

• BOLT	2nd release	
(Beta	1)

LLVM	Compiler
• Implemented	

transformations:	
region	merging,	
barrier	removal	
(baseline	for	
future	parallel	IR	
solutions)

• Prototyped	new	
parallelism	and	
locality	
transformations;	
tested	on	Intel	
Skylake

Verification	and	
Validation	Suite

• Launched	V&V	
website

• Release	of	V&V	
suite

• Increased	
compiler	
coverage	for	Titan	
and	SummitDev.	

• Summit	V&V	in	
progress

OpenMP Services

Accelerator	 Parallelism Tasking
Memory	

ManagementAffinity

ECP	
Value

SOLLVE	
Thrust	
Areas

Updates

Training	and	Outreach
Webinars,	Workshops,	ECP	Annual	Meeting	Hybrid	Optimization	(OpenMP +	MPI)	Tutorial,	Hackathons

Figure 22: SOLLVE thrust area updates

that leverage both prototyped OpenMP features and those introduced in OpenMP 4.5. User adoption of
new OpenMP capabilities could vary from months to years. Thus, delivering compiler technology that
automatically transforms user’s code targeting the new OpenMP functionality (e.g. target offloading
with data mappers), represents high return value for ECP in terms of time and resources.

5. Validation and verification (V&V) This thrust focuses on designing and implementing a benchmark
suite that allows to assess the coverage and standard compliance of several OpenMP implementations
(LLVM, BOLT, IBM XL, NVIDIA, etc). In addition, a ticket system for bug reporting and inquiries
has also been deployed to facilitate interaction with end users.

Recent Progress Figure 22 shows the latest progress on the 5 core SOLLVE thrust areas. We note that
the training and outreach activity is a cross-cutting effort which includes resources from the SOLLVE
project and external partners, namely collaborators from Lawrence Berkeley National Laboratory, Oak Ridge,
University of Delaware and other academic institutions. In addition to the above updates, a number of
articles have also been published as part of the SOLLVE effort [44, 45, 46, 47].

Next Steps As next steps planned for SOLLVE we have

• Applications: gather more requirements for memory management API and concurrent parallel construct;
prepare and coordinate OpenMP webinar focusing on memory management, deep copy and tasking.

• OpenMP standard: Next face-to-face meeting in May; ratify and vote latest memory management
features, mappers and parallelism descriptors

• OpenMP runtime: design and implement high-level interface for passing scheduling/blocking hints

• LLVM compiler: develop new optimizations leveraging prototype parallel-IR; refine Clang based
implementation of data layout transformations; evaluate new compiler transformations on Intel KNL
and ARM architectures

• V&V suite: identify performance critical kernels from selected applications; prepare release for SC18;
coordinate suite deployment with CORAL systems.

Exascale Computing Project (ECP) 59 ECP-RPT-ST-0001-2018

4.1.15 Argobots: Flexible, High-Performance Lightweight Threading

Overview Efficiently supporting massive on-node parallelism demands highly flexible and lightweight
threading and tasking runtimes. At the same time, existing lightweight abstractions have shortcomings while
delivering generality and specialization. Our group at Argonne developed a lightweight, low-level threading
and tasking framework, called Argobots. The key focus areas of this project are: (1) To provide a framework
that offers powerful capabilities for users to allow efficient translation of high-level abstractions to low-level
implementations. (2) To provide interoperability with other programming systems such as OpenMP and
MPI as well as with other co-located I/O services. (3) To provide a programming framework that manages
hardware resources more efficiently and reduce interference with co-located applications.

Key Challenges Several user-level threading and tasking models have been proposed in past to address
the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Their lightweight nature
and flexible generic interface play an important role at managing efficiently the massive concurrency expected
at the Exascale level. Existing user-level threading and tasking models, however, are either too specific
to applications or architectures or are not as powerful or flexible. Existing runtimes tailored for generic
use [48, 49, 50, 51, 52, 53, 54, 55, 56] are suitable as common frameworks to facilitate portability and
interoperability but offer insufficient flexibility to efficiently capture higher-level abstractions, while specialized
runtimes [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67] are oriented to a specific environment.

Solution Strategy Argobots offers a carefully designed execution model that balances generality of
functionality with providing a rich set of controls to allow specialization by end users or high-level programming
models. Argobots honors this high degree of expressibility through three key aspects:

1. Argobots distinguishes between the requirements of different work units, which are the most basic
manageable entities. Work units that require private stacks and context-saving capabilities, referred to
as user-level threads (ULTs, also called coroutines or fibers), are fully fledged threads usable in any
context. Tasklets do not require private stacks. They are more lightweight than ULTs because they do
not incur context saving and stack management overheads. Tasklets, however, are restrictive; they can
be executed only as atomic work units that run to completion without context switching.

2. Work units execute within OS-level threads, which we refer to as execution streams (ESs). Unlike
existing generic runtimes, ESs are exposed to and manageable by users.

3. Argobots allows full control over work unit management. Users can freely manage scheduling and
mapping of work units to ESs and achieve the desired behavior.

In order to ensure fast critical paths despite the rich set of capabilities, Argobots was designed in a
modular way to offer configuration knobs and a rich API that allow users to trim unnecessary costs.

Recent Progress The proposed lightweight, low-level threading and tasking framework that is designed
as a portable and performant substrate for high-level programming models or runtime systems is called as
Argobots. The design of the Argobots is as follows:

1. Execution Model: Figure 23 illustrates the execution model of Argobots. Two levels of parallelism
are supported: ESs and work units. An ES maps to one OS thread, is explicitly created by the user,
and executes independently of other ESs. A work unit is a lightweight execution unit, a ULT or a
tasklet, that runs within an ES. There is no parallel execution of work units within a single ES, but
work units across ESs can be executed in parallel. Each ES is associated with its own scheduler that is
in charge of scheduling work units according to its scheduling policy.

2. Scheduler: Argobots provides an infrastructure for stackable or nested schedulers, with pluggable
scheduling policies, while exploiting the cooperative non-preemptive activation of work units. Localized
scheduling policies such as those used in current runtime systems, while efficient for short execution,
are unaware of global policies and priorities. Argobots allows each ES to have its own schedulers. To
execute work units, an ES has at least one main scheduler (SM). A scheduler is associated with one

Exascale Computing Project (ECP) 60 ECP-RPT-ST-0001-2018

or more pools where ready ULTs and tasklets are waiting for their execution. Stacking schedulers is
achieved through pushing schedulers into a pool. When a higher-level scheduler pops a scheduler from
its pool, the new scheduler starts its execution (i.e., scheduling). Once it completes the scheduling,
control returns to the scheduler that started the execution. To give control back to the parent scheduler,
a scheduler can also yield. To support plugging in different scheduling policies, all schedulers, including
the main scheduler, and pools are replaceable by user-provided alternatives.

3. Primitive Operations: Argobots defines primitive operations for work units such as Creation, Join,
Yield, Yield to, Migration and Synchronizations. Since tasklets are used for atomic work without
suspending, most operations presented here—except creation, join, and migration—apply only to ULTs.

Argobots is implemented in C language. An ES is mapped to a Pthread and can be bound to a hardware
processing element (e.g., CPU core or hardware thread). Context switching between ULTs can be achieved
through various methods, such as ucontext, setjmp/longjmp with sigaltstack [68], or Boost library’s
fcontext [69]. A pool is a container data structure that can hold a set of work units and provides operations
for insertion and deletion. Argobots relies on cooperative scheduling of ULTs to improve resource utilization.
That is, a ULT may voluntarily yield control when idle in order to allow the underlying ES to make progress
on other work units.

Pool

U

ULT

T

Tasklet

E

Event

ES1

SM1

U

EE

U

S1

S2

T

T

T

T

U U T T U T

ES2

SM2EE

U

U

U

T

T

T

S

Scheduler

PS

PM11

PE1

P21P11

PE2

PM22PM21

...

ESn

Figure 23: Argobots execution model

Next Steps We studied three use cases of Argobots for higher level runtimes as follows:

1. OpenMP over Argobots: Our OpenMP runtime implemented over Argobots (called BOLT) outper-
forms other OpenMP implementations because of using lightweight work units. We plan to leverage the
supported features.

2. Interoperability with MPI: We investigated an MPI runtime that interoperates with Argobots
ULTs instead of OS-level threads. The runtime has been shown to be subject to lock management
issues directing us to further work on lock implementation.

3. Colocated I/O services: The most straightforward way to utilize Argobots within an I/O service
daemon is to create a new ULT to service each incoming I/O request. We implemented two small
extension libraries to help support this use case. The first, abt-io and the second is abt-snoozer. Further
the service routines are decomposed into smaller discrete event-driven routines with disjoint stacks,
a technique known as stack ripping [57]. Presently, Argobots significantly reduce the development,
debugging, and maintenance burden for system services and needs further investigations.

Exascale Computing Project (ECP) 61 ECP-RPT-ST-0001-2018

4.1.16 BOLT: Lightning Fast OpenMP

Overview OpenMP is central for several applications that target Exascale, including ECP applications, to
exploit on-node computational resources. Unfortunately, current production OpenMP runtimes, such as those
that ship with Intel and GNU compilers, are inadequate for the massive and fine-grained concurrency expected
at the Exascale level. These runtimes rely on heavy-handed OS-level threading strategies that incur significant
overheads at fine-grained levels and exacerbate interoperability issues between OpenMP and internode
programming systems, such as MPI and OpenSHMEM. Our solution is a production quality OpenMP runtime
(called BOLT) that leverages user-level threads instead of OS-level threads (e.g., Pthreads). Due to their
lightweight nature, managing and scheduling user-level threads incurs significantly less overhead. Furthermore,
interoperability between BOLT and internode programming systems opens up new optimization opportunities
by promoting asynchrony and reducing hardware synchronization (atomics and memory barriers). Initial
studies on this proposal can be found in [70, 71]. This report briefly summarizes the issues in OpenMP
runtimes that rely on OS-level threading, describes BOLT as the solution to this challenge, the current status
in the BOLT effort, and the next steps for further improvements.

Key Challenges The growing hardware concurrency in High Performance Computing (HPC) cluster nodes
is pushing applications to chunk work more fine-grained to expose parallelism opportunities. This is often
achieved through nested parallelism either in the form of parallel regions or explicit tasks. Nesting parallel
regions can potentially cause oversubscription of OS-level threads to CPUs and thus lead to expensive OS-level
thread management. Such heavy costs usually outweigh the benefits of increased concurrency and thus
compels the OpenMP programmer to avoid nested parallel regions altogether. Such workaround, however, not
only causes poor resource utilization from insufficient parallelism but is also not always possible. For instance,
the nested level could be outside the control of the user because it belongs to an external library that also
uses OpenMP internally. Internode programming systems, such as MPI and OpenSHMEM, are not aware of
OpenMP semantics, such as the notion of an OpenMP task. What these internode systems understand is the
low-level threading layer used by OpenMP, such as Pthreads. This threading layer serves as the interoperability
medium between OpenMP and the internode programming system and has a direct impact on performance.
For instance, when OpenMP threads are allowed to concurrently perform internode communication, the
interoperability layer dictates how thread safety and progress on communication is handled. It is notoriously
known that OS-level thread safety in production MPI libraries suffers significant performance issues. Despite
the recent improvements to OS-level thread safety in MPI libraries, the state-of-the-art performance results
are still indicating serious scalability issues. While continues progress on improving OS-level thread safety in
these important internode programming systems is crucial for traditional interoperability, we propose in this
work exploring an orthogonal direction that assumes a more lightweight interoperability layer.

Solution Strategy Both fine-grained parallelism and interoperability issues suffer from the heavy nature
of working at the level of OS threads. Our solution to both challenges leverages user-level threads. Using
user-level threads as the underlying threading layer for the OpenMP runtime offers a significantly better
trade-off between high concurrency and thread management overheads. This allows users to generate fine-
grained concurrency and oversubscription without worrying about the performance collapse that is observed
in current OpenMP runtimes. Our OpenMP runtime, BOLT, is derived from the LLVM OpenMP runtime
and leverages Argobots, a highly optimized lightweight threading library, as its underlying threading layer.
OpenMP threads and tasks are spawned as Argobots work units and nested parallel regions are managed
through an efficient work-stealing scheduler. Furthermore, new compiler hints are being investigated to
allow reducing thread management overheads even further. Interoperability improvements have also been
demonstrated by having BOLT interoperate with an MPI library (MPICH) through the Argobots threading
layer rather than OS-level threads. Results showed that this approach allows better communication progress
and outperforms the traditional Pthreads-level interaction.

Recent Progress The development of BOLT went through several steps that involved developing or
optimizing various aspects. The first step was to fork BOLT from the upstream LLVM OpenMP runtime
(https://openmp.llvm.org) and replace the Pthreads layer with a basic Argobots design. Next, we implemented
advanced scheduling strategies to improve the performance of BOLT under fine-grained nested parallelism

Exascale Computing Project (ECP) 62 ECP-RPT-ST-0001-2018

regimes. Figure 24 shows the development of BOLT. The following step was to investigate ways to reduce
thread management overheads by exploiting application knowledge. By taking into account the suspension
likelihood of a thread or task (e.g., yield execution on a blocking I/O operation), we have extended Argobots
to leverage such information and incorporated these features into the BOLT runtime. With respect to
interoperability with MPI, we have investigated the shortcomings of current interoperability models at the
implementation as well as standard specification levels. We have investigated the benefits of having a more
lightweight interoperability layer through Argobots using BOLT as the OpenMP runtime and MPICH as the
MPI library and demonstrated encouraging results. BOLT and Argobots have been subject to two releases
and our latest progress results have been published in the prestigious IEEE Transactions on Parallel and
Distributed Systems journal and some results have been described in an ECP report.

Intel Compilers LLVM

Intel OpenMP Runtime BOLT

Argobots
POSIX Threads (Pthreads)

GCC

GCC OpenMP Runtime

Figure 24: Pictorial representation of development of BOLT

Next Steps Some aspects of BOLT require further work and investigation. In the following we enumerate
some of the key aspects under progress:

1. User hints to lower thread management overheads previously described were only implemented at the
runtime level. We plan to work with the compiler team of the SOLLVE project to integrate these hints
at the compiler level.

2. Only benchmarks and a few application cases have been used for evaluation purposes. We plan to
investigate a wider range of applications, including ECP ones, to evaluate the effectiveness of our
solution and potentially discover new areas of needed improvement.

3. The interoperability results between BOLT and MPI were encouraging but still preliminary. We
are planning on doing more extensive evaluation of this interoperability layer with benchmarks and
applications and potentially implement improvement if scalability is unsatisfactory.

4. Finally, we plan to perform more rigorous robustness testing with validation and test suites as well as
with fully-fledged applications and proxy-application for as much coverage as possible.

Exascale Computing Project (ECP) 63 ECP-RPT-ST-0001-2018

4.1.17 UPC++

Overview The UPC++ project is developing a C++ library that supports Partitioned Global Address
Space (PGAS) programming [72]. The UPC++ project began in 2012 with a prototype designated V0.1,
described in [73]. We are revising the library under the auspices of the DOE’s Exascale Computing Project,
to meet the needs of applications requiring PGAS support. UPC++ is well-suited for implementing elaborate
distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for
moving non-contiguous data and sending Remote Procedure Calls (RPC) are composable and closely resemble
those used in modern C++.

UPC++ is needed for ECP because it delivers low-overhead communication that runs at close to hardware
speeds, embracing interest by vendors in the PGAS model because it efficiently matches the RDMA mechanisms
offered by network hardware and on-chip communication between distinct address spaces. Because ECP
applications rely on irregular representations to improve accuracy and conserve memory, the UPC++ library
provides an essential ingredient for the ECP software stack. It will enable effective scaling in Exascale software
by minimizing the work funneled to lightweight cores, avoiding the overhead of long, branchy serial code paths,
and supporting efficient fine-grained communication. The importance of these properties is exacerbated by
application trends; many ECP applications require the use of adaptive meshes, sparse matrices, dynamic load
balancing, or similar techniques. UPC++’s low-overhead communication mechanisms can maximize injection
rate and network utilization, tolerate latency through overlap, streamline unpredictable communication
events, minimize synchronization, and efficiently support small- to medium-sized messages arising in such
applications. UPC++ will enable the ECP software stack to exploit the best-available communication
mechanisms, including novel features being developed by vendors. This library offers a complementary,
yet interoperable, approach to MPI with OpenMP, enabling developers to focus their effort on optimizing
performance-critical communication.

Key Challenges As the result of technological trends, the cost of data motion is steadily increasing relative
to that of computation. To reduce communication costs we need to either reduce the software overheads
or hide communication behind available computation. UPC++ addresses both strategies. To reduce
software overheads, UPC++ takes advantage of the GASNet-EX communication library’s [74] low-overhead
communication as well as access to any special hardware (see the accompanying report on GASNet-EX, which
is being co-designed). UPC++ supports asynchronous communication via classic one-sided communication
(i.e. puts and gets) and remote procedure calls, to support communication hiding.

Solution Strategy The UPC++ project has two primary thrusts:

1. Increased performance through reduced communication costs: The UPC++ programmer
can expect communication to run at close to hardware speeds. Asynchronous execution enables an
application to hide communication behind available computation.

2. Improved productivity: UPC++’s treatment of asynchronous execution relies on futures and
promises, and these simplify the management of asynchrony.

The PGAS one-sided communication employed by UPC++ (get/put) benefits application performance by
mapping tightly onto the RDMA communication supported by the communication network. GASNet-EX
provides the thin middleware needed to enable this model to run at close to hardware speeds, across platforms
ranging from laptops to supercomputers. One-sided communication also has another benefit. It decouples
synchronization from data motion, avoiding synchronization overheads of two-sided communication (e.g.
message passing).

UPC++’s Remote Procedure Call, which is built on GASNet Active Messages, provides additional control
over asynchronous execution, by enabling the programmer to execute procedure calls on remote processors.
RPC is useful in managing access to complicated irregular data structures, and in expressing asynchronous
task execution.

UPC++ addresses productivity via one-sided data motion, remote procedure calls, and via the provision of
futures. Futures enable the programmer to capture data readiness state, which is useful in making scheduling
decisions, via continuations, to execute asynchronously as dependencies become satisfied. Chaining and
conjoining of asynchronous operations simplify treatment of their completion.

Exascale Computing Project (ECP) 64 ECP-RPT-ST-0001-2018

Recent Progress symPACK is a direct linear solver for symmetric positive definite sparse matrices.
Originally written using the legacy UPC++ V0.1, we have recently ported symPACK to use the latest release
of UPC++ V1.0. Our experiments conducted on NERSC Edison confirm that the new UPC++ version
preserves the performance of the symPACK solver.

1 4 24 32 64 96 19
2

25
6

38
4

Process count

100

101

Ti
m

e
(s

)

Impact of communication strategy for boneS10
symPACK - Push - MPI 2-sided
symPACK - Pull - UPC++ 1-sided

symPACK - Pull with event-driven
scheduling - UPC++ 1-sided

(a) Push – MPI two-sided communication
Pull – UPC++: RPC + RMA Get when ready
2 variants with and without event driven scheduling

24 48 96 14
4

19
2

26
4

38
4

57
6

76
8

Process count

101

102

T
im

e
 (

s)

Run times for Flan_1565
MUMPS 5.1.2

PASTIX 5.2.3

symPACK

(b) Strong scaling of symmetric solvers
(Factorization time only)

Figure 25: Performance of the symPACK solver using UPC++ V1.0

The first experiment, depicted in Fig. 25a compares the performance of three implementations of symPACK:

• a Push strategy (the sender “pushes” the outgoing message as soon as possible) using non-blocking
MPI two-sided messages,

• a Pull strategy (sender “notifies” with RPC, receiver RMA gets when ready) using one-sided UPC++
RPC and RMA get,

• the same Pull strategy using one-sided UPC++ RPC and RMA get, combined with an event-driven
dynamic scheduling policy.

UPC++ allows symPACK to implement an efficient Pull strategy using one-sided operations in a simple
and efficient fashion. This implementation surpasses the performance of the original MPI two-sided variant.
Fig. 25b compares the strong scalability, on NERSC Edison, of symPACK with other state-of-the-art solvers
for sparse symmetric matrices. symPACK can be seen to significantly outperform the other solvers on this
particular problem, a trend which can be observed on most matrices from the SuiteSparse matrix collection.

Next Steps Our next efforts are:

1. Team-aware APIs: Teams are a mechanism for grouping ranks. Team-aware APIs will be developed
to enable teams to be used not only in collective communication (see below) but also in distributed
objects, and certain modes of accessing global shared storage.

2. Support for non-blocking collectives: UPC++ supports a small number of collectives, and this
set will be expanded to accommodate the needs of our application partners. Support for teams will also
be included.

Exascale Computing Project (ECP) 65 ECP-RPT-ST-0001-2018

4.1.18 GASNet-EX

Overview The Lightweight Communication and Global Address Space Support project (Pagoda) is devel-
oping GASNet-EX, a portable high-performance communication layer supporting multiple implementations
of the Partitioned Global Address Space (PGAS) model, including Pagoda’s PGAS programming interface
UPC++ [72] and the Legion Programing System [75, 76] (WBS 2.3.1.08).

GASNet-EX’s low-overhead communication mechanisms can maximize injection rate and network utiliza-
tion, tolerate latency through overlap, streamline unpredictable communication events, minimize synchro-
nization, and efficiently support small- to medium-sized messages arising in ECP applications. GASNet-EX
will enable the ECP software stack to exploit the best-available communication mechanisms, including novel
features still under development by vendors. The GASNet-EX communications library and the PGAS models
built upon it offer a complementary, yet interoperable, approach to MPI with OpenMP, enabling developers
to focus their effort on optimizing performance-critical communication.

We are co-designing GASNet-EX with the UPC++ development team with additional input from the
Legion and (non-ECP) Cray Chapel [77, 78] projects.

Key Challenges Exascale systems will deliver exponential growth in on-chip parallelism and reduced
memory capacity per core, which will increase the need for strong scaling and thus smaller communication
events. To scale well, Exascale software needs to minimize the work performed by lightweight cores and avoid
the overhead of long, branchy serial code paths; it needs to support efficient fine-grained communication.
These problems are exacerbated by application trends; many of the ECP applications require adaptive meshes,
sparse matrices, or dynamic load balancing. All of these point to the need for low-overhead communication
mechanisms that can maximize injection rate and network utilization, tolerate latency through overlap,
accommodate unpredictable communication events, minimize synchronization, and efficiently support small-
to medium-sized messages. The ECP software stack needs to expose the best-available communication
mechanisms, including novel features being developed by the vendor community.

Solution Strategy The Global Address Space (GAS) model is a powerful means of addressing these
challenges and is critical in building other ECP programming systems, libraries, and applications. We use
the term GAS for models that support one-sided communication (including contiguous and non-contiguous
remote put/get operations and atomics). Many of these models also include support for remote function
invocation. GASNet-EX is a communications library that provides the foundation for implementing GAS
models, and is the successor to the widely-deployed GASNet library. We are building on 15 years of experience
with the GASNet [74, 79] communication layer to provide production-quality implementations that include
improvements that address technology trends and application experience.

The goal of the GASNet-EX work is to provide a portable, high-performance GAS communication layer
for Exascale and pre-Exascale systems, to address the challenges identified above. GASNet-EX provides
interfaces that efficiently match the RDMA capabilities of modern inter-node network hardware and intra-node
communication between distinct address spaces. Interfaces for atomics and collectives are being developed
to enable offload to current and future network hardware with corresponding capabilities. These design
choices and their implementations provide the low-overhead communications mechanisms required to address
Exascale applications’ requirements.

Recent Progress The 2017.6.0 release of GASNet-EX introduced three new features, known as “New Active
Message Interfaces”, “Immediate Operations” and “Local Completion”. The 2017.12.0 release introduced a
new “Remote Atomics” feature, as well as “Expanded VIS Interfaces”. These two releases contain network-
independent “reference” implementations of these features, which provide implementations in terms of the
pre-existing functionality available in GASNet-EX on all networks. While these reference implementations
are correct and functionally complete, they do not take advantage of network-specific mechanisms.

The most recent work, present in the 2018.3.0 release, provides network-specific implementations of
GASNet-EX’s new features for the Cray Aries network used in Cray XC-series systems. Performance gains
achieved include (1) Negotiated-Payload Active Messages improve bandwidth of a ping-pong test by up to
14%, (2) Immediate Operations reduce running time of a synthetic benchmark by up to 93%, (3) non-bulk
RMA Put bandwidth is increased by up to 32%, (4) Remote Atomic performance is 70% faster than the

Exascale Computing Project (ECP) 66 ECP-RPT-ST-0001-2018

reference on a point-to-point test and allows a hot-spot test to scale robustly, and (5) non-contiguous RMA
interfaces see up to 26% speedups for an inter-node benchmark. More complete details are available in an
LBNL Technical Report [80].

Figure 26: Weak Scaling of 64-bit Unsigned Integer Atomic Hot-Spot Test on
ALCF’s Theta

The Aries-specific implementation of remote atomics offloads most operations to the Aries NIC, yielding a
1.7x reduction in latency, and greatly improved scalability in a many-to-one atomics hot-spot test. Figure 26
shows results on ALCF’s Cray XC-40, Theta, for such a benchmark in which all 64 cores on one or more
compute nodes simultaneously perform 64-bit unsigned integer fetch-and-add operations on a single location.
The figure shows the aggregate throughput as a function of the number of processes. The data shows that as
the process count increases, the aggregate performance of the reference implementation actually drops (due
to overheads of message reception dominating). Meanwhile the performance of the Aries-specific version rises
steadily as the node count increases from 1 to 8 (64 to 512 processes), and continues to rise gradually from
that point to the highest concurrency measured (128 nodes = 8192 processes). For comparison, the “Perfect
Scaling” line (in red at the upper-left of the figure) shows the throughput of a single-process run scaled by
the process count.

Next Steps Our next efforts include:

1. “Teams and Collectives” are to be updated (both specification and implementation) for new
GASNet-EX interfaces to improve scalability and to enable future offload efforts.

2. “Dependent Operations” are to be implemented, to permit client runtimes to express ordered
sequences of operations to be executed by GASNet-EX.

Exascale Computing Project (ECP) 67 ECP-RPT-ST-0001-2018

4.1.19 Enhancing Qthreads for ECP Science and Energy Impact

Overview “Enhancing Qthreads for ECP Science and Energy Impact” is a project that aims to improve the
performance of applications that use multithreading with communication, e.g., MPI. Most ECP applications
are using this combination of programming models, with the Kokkos or RAJA performance portability
libraries and/or the OpenMP API for multithreading. This project supports the Kokkos ECP software project
and OpenMP from the underlying runtime layer to deliver thread-scalable performance to those applications.
To that end, our projects is developing techniques to incorporate support for better network concurrency into
the multithreading runtime system.

Key Challenges Our project addresses the challenge of scalably coupling multithreaded parallelism on the
many-core node with communication such as MPI, which has traditionally performed poorly in multithreaded
mode. The key challenge arises when multiple threads make communication calls, and those calls must
be serviced by the MPI implementation and NIC. Existing solutions, such as MPI THREAD MULTIPLE,
are often plagued by synchronization overheads. Even the best vendor MPI implementations incur high
overheads when the number of threads exceeds the number of hardware contexts in the NIC. While current
mechanisms are insufficient even for today’s systems, emerging interconnect technologies expose even more
network parallelism that must be exploited to maximize performance for Exascale.

Solution Strategy Unlike previous approaches, we attack the problem not only from the communication
side (MPI), but with assistance from the multithreading runtime system. Our work adds capabilities to
enable the runtime system to identify and optimize for tasks that use communication, distinct from tasks
that perform only local computation. We use the Qthreads runtime [81], a scalable, event-driven library for
node-level task parallelism, to implement our solution. This work requires cooperation with a communication
library that can scalably process communications operations coming from the runtime system. For this
purpose, we pair Qthreads with the new “FinePoints” library for threaded MPI execution developed in the
OMPI-X ECP project.

Developed at Sandia Labs since 2007, Qthreads serves as a back-end for Kokkos and the Cray Chapel
language, as well as providing a portable native C API. Complementary to the current ECP project focusing
on the coupling of the runtime with communication, development of Qthreads core capabilities is part of
the NNSA ASC system software portfolio and has also been part of sponsored vendor collaborations and
LDRD projects. In addition, the techniques developed in this project will be the subject of tech transfer
efforts to OpenMP and MPI. The project technical lead is chair of the OpenMP Subcommittee on Task
Parallelism, and one of the other technical experts on the project is a key contributor to the MPI Forum and
the OMPI-X ECP project that is enhancing the open-source Open MPI implementation of MPI for exascale.
We are leveraging the work of that project, and synergies between Qthreads and the OpenMP and Kokkos
tasking models.

Recent Progress Most recently, we added the optional network task annotation to task definitions in
Qthreads, allowing the identification of communication tasks to the runtime system. We also demonstrated
successful coupling of Qthreads with the MPI FinePoints library. FinePoints uses a partitioned buffer to collect
the contributions of the various tasks executing on the runtime’s threads. Using only atomics rather than
heavyweight locks keeps overhead costs low compared to existing methods like MPI THREAD MULTIPE,
and unlike the Endpoints proposal, the MPI rank space does not expand with the use of more threads. We
ported FinePoints benchmark code to use Qthreads as the multithreading library instead of OpenMP and
compared to the performance of the two configurations, shown in Figure 27. The observed equivalence in
performance justifies our use of Qthreads as a proxy for OpenMP, wherein Qthreads can be used for ease of
rapid protoyping of new capabilities with eventual tech transfer back to OpenMP. These results also serve as
baselines to measure the performance of our further optimizations against. Finally, we made an initial port of
the miniGhost stencil mini-app to use FinePoints with Qthreads to confirm portability beyond benchmarks.
Tuning of that mini-app is currently work in progress.

Next Steps We will investigate several possible optimizations, either in terms of Qthreads runtime
improvements alone, or in conjunction with the OpenMPI implementation in which Finepoints is natively

Exascale Computing Project (ECP) 68 ECP-RPT-ST-0001-2018

1

100

10000

1e+04 1e+06 1e+08
Buffer size (bytes)

B
an

dw
id

th
 (

M
B

/s
)

Model.Test.NumThreads

qthreads.distrib.21.64

openmp.openmp.21.64

Test 21 ,KNL, Both

Figure 27: This graph shows the performance of Qthreads and OpenMP paired
with the FinePoints library for multithreaded MPI. The x-axis varies the buffer
sizes transferred in each experiment in the series, and the y-axis shows the network
bandwidth achieved. The similar performance of Qthreads and OpenMP justifies
use of the former as a suitable proxy for the latter, with the advantage of flexibility
for rapid prototyping of new runtime system techniques.

available as an extension:

• Enabling the swapping of schedulers in the Qthreads runtime at execution time in response to the tasks
set observed. (Currently the scheduler must be selected at configure time, so we would progress from
there to selection at the start of an execution, and finally to a dynamic selection during the execution.)

• To better enable the coordination of Qthreads and OpenMPI, add Qthreads as an MPI threading model
instead of the default pthreads. (This requires modifying OpenMPI’s “opal” subsystem to use a new
threading mechanism.)

• To explore this scheduling infrastructure, implement novel scheduling points (e.g. synchronization
points in critical regions) allowing contended OpenMPI synchronization areas to schedule Qthreads
events and vice versa.

• With hierarchical and differential scheduling infrastructure in place, seek to design scheduling policies
which optimize the interaction between composed runtimes.

We anticipate that due to technical and logistical constraints, only a subset of these tasks may be possible,
but there will be value in at least attempting them and documenting our findings. We feel confident that
through this work, significant strides will be made toward better coupling of threading and communication.

Exascale Computing Project (ECP) 69 ECP-RPT-ST-0001-2018

Figure 28: Interface for complex memory that is abstract, portable, extensible
to future hardware; including a mechanism-based low-level interface that reins
in heterogeneity and an intent-based high-level interface that makes reasonable
decisions for applications

4.1.20 SICM

Overview The goal of this project is to create a universal interface for discovering, managing and sharing
within complex memory hierarchies. The result will be a memory API and a software library which implements
it. These will allow operating system, runtime and application developers and vendors to access emerging
memory technologies. The impact of the project will be immediate and potentially wide reaching, as developers
in all areas are struggling to add support for the new memory technologies, each of which offers their own
programming interface. The problem we are addressing is how to program the deluge of existing and emerging
complex memory technologies on HPC systems. This includes the MCDRAM (on Intel Knights Landing),
NV-DIMM, PCI-E NVM, SATA NVM, 3D stacked memory, PCM, memristor, and 3Dxpoint. Also, near
node technologies, such as PCI-switch accessible memory or network attached memories, have been proposed
in exascale memory designs. Current practice depends on ad hoc solutions rather than a uniform API that
provides the needed specificity and portability. This approach is already insufficient and future memory
technologies will only exacerbate the problem by adding additional proprietary APIs. Our solution is to
provide a unified two-tier node-level complex memory API. The target users for the low-level interface are
system and runtime developers, as well as expert application developers that prefer full control of what
memory types the application is using. The high-level interface is designed for application developers who
would rather define coarser-level constraints on the types of memories the application needs and leave out the
details of the memory management. The low-level interface is primarily an engineering and implementation
project. The solution it provides is urgently needed by the HPC community; as developers work independently
to support these novel memory technologies, time and effort is wasted on redundant solutions and overlapping
implementations. The high-level interface starts with a co-design effort involving application developers.
It would potentially evolve into more research as intelligent allocators, migrators, and profiling tools are
developed. We can achieve success due to our team’s extensive experience with runtimes and applications.
Our willingness to work with and accept feedback from multiple hardware vendors and ECP developers
differentiates our project from existing solutions and will ultimately determine the scale of adoption and
deployment.

Exascale Computing Project (ECP) 70 ECP-RPT-ST-0001-2018

Key Challenges This effort is a new start and relies on interaction and acceptance of both the vendors and
various runtime libraries. Defining a common mechanism to expose various heterogeneous memory devices is
important but vendors have not little adopted a standard in this area and will have to be led to a solution.

Solution Strategy The deliverable of this project is the userspace libraries and modifications to the Linux
kernel [82] to that would allow better use of heterogeneous memories. The low-level interface would provide
support for discovery, allocation/de-allocation, partitioning, and configuration of the memory hierarchy and
information on the properties of each specific device (capacity, latency, bandwidth, volatility, power usage,
etc.). The interface will be quickly prototyped for a small set of currently available memory technologies (both
volatile and non-volatile) and delivered to runtime and application developers, as well as vendors, for feedback
on its functionality, performance and features. The high-level interface will leverage the low-level library in
order to further decouple applications from hardware configurations. Specifically, it would emphasize ease
of use by application developers with a policy/intent driven syntax enabled through run-time intelligence
and system support. Applications would specify which attributes (such as fast, low latency, high capacity,
persistent, or reclaimable) are a priority for each allocation and the interface will provide the most appropriate
configuration. Finally, the missing element is a common set of functions that would constitute a minimal
hardware interface to the various types of memory. The goal is to allow fast porting to new hardware but
still leave room for innovation by vendors.

Recent Progress

• Low-Level Interface: Progressing on the refactoring of the initial SICM userspace library. Developed the
data structure and implementation to track the memory pages in different arenas. High-Level Interface:

• High-Level Interface: Completed initial API design for new high-level SICM persistent memory meta
allocator, now called ”Metall”. Design heavily leverages open-source Boost.Interprocess, and retains
some compatibility with it.

• Analysis: Ongoing meetings with Ompi-X team members at Univ. of Tennessee to discuss memory
needs and SICM requirements.

• Analysis: evaluating new static analysis capabilities in the Portland Group compiler that generates
comprehensive relationship data of both data structures and functions. The results for ACME are
stored in a database. As of this quarter, we can now reliably tie trace references back to a line of code
via the database.

• Analysis: evaluating ACME using Gem5. We are currently resolving some compatibility issues between
the ACME build environment and our Gem5 virtual machine. We now have traces from ES3M and
several mini-apps.

• Analysis: Efforts to analyze E3SM and mini-apps using tools by Cray and Intel. These results will
be combined with previous results to help characterize barriers and gaps based on feedback from the
E3SM team.

• Cost Models: We have extracted a lot of experimental data related to application memory use and
layout. This was done with full applications on hardware with the memory throttling-based emulation
methodology. Additionally we have finer grained measurements for smaller C benchmarks where we
have isolated individual data structures and applied different tiering decisions to assess metrics such
as sensitivity, benefit, etc. More of a tool and profiling process to inform the design of the a simple
API/API extension that you might integrate with the running application. [83]

• Cost Models: Development of a tool, Mnemo, which provides for automated recommendations of
capacity sizing of heterogeneous memories for object store workloads. Given a platform with specific
configuration of different memories, and a (representative) workload, we can quickly extract some of the
relevant memory usage metrics, and produce cost-benefit estimation curves as a function of different
capacity allocations of the different types of memories. The output of Mnemo are estimates which give
its users information to make informed decisions about capacity allocations. This can have practical
use in shared/capacity platforms, or to rightsize capacity allocations to collocated workloads.

Exascale Computing Project (ECP) 71 ECP-RPT-ST-0001-2018

Next Steps

• Low-Level Interface: Finish implementation of refactor and test with proxy applications for functionality
and correctness. Investigate Linux kernel modifications for page migration in collaboration with ECP
project Argo 2.3.5.05 and RIKEN research center in Japan. Verify support of emerging OpenMP
standards.

• High-Level Interface: Continuing to work on completing first working prototype; performance testing
to follow after prototype is complete. Initial performance benchmarks have been selected, including
a key-value store with skewed key frequency distribution. These benchmarks also serve as part of a
correctness validation test set.

• Document needs of MPI and ACME climate app hybrid memory analysis (with ORNL collaborators
and related to UNITY)

• Understand capabilities of hwloc and netloc with respect to OMPI-X needs. Future planned reports
will include assessments of what the new SICM tools provide compared to current tools using ACME
as a benchmark. The missing gaps are used by the SICM team to inform R/D directions.

Exascale Computing Project (ECP) 72 ECP-RPT-ST-0001-2018

4.2 DEVELOPMENT TOOLS

This section present projects in Development Tools.

Exascale Computing Project (ECP) 73 ECP-RPT-ST-0001-2018

4.2.1 Development Tools Software Development Kits

Overview The Development Tools SDK effort is focused on identifying meaningful aggregations of products
in this technical area. SDK efforts are in the early stages of planning and execution. Most of the work on
SDKs has been driven from the SW Ecosystem & Delivery technical area. A description of the SDK effort
can be found in Section 4.5.1.

Exascale Computing Project (ECP) 74 ECP-RPT-ST-0001-2018

4.2.2 LANL ATDM Tools

Overview The Los Alamos National Laboratory ATDM Tools project provides tools and software infras-
tructure for improving various aspects of the Exascale programming environment. At present our efforts are
focused in two key areas that are prioritized to meet the needs of LANL’s ATDM efforts and are also broadly
applicable to broader ECP scope:

1. Kitsune: An advanced LLVM [84] compiler and tool infrastructure supporting a new explicit parallel
intermediate representation for the C/C++ and Fortran programming languages.

2. QUO: A runtime library that assists application developers in the composition of multiple software
components (e.g. libraries, multi-physics components) that have disjoint mappings to the underlying
hardware components. Explicit coordination of this mapping is often critical to not only improve
performance but also to make more effective use of computing resources (i.e. allowing developers to
avoid over-subscription of a job’s node allocations).

Key Challenges The general challenge across both project components is providing and supporting a
productive development environment in a currently yet-to-be-defined set of system architectures. This is not
only difficult given a large number of applications (and application components) but can become increasingly
complex if the attributes of potential target platforms are divergent. This requires that we must be flexible
and also understand that many platform-centric decisions can have a significant and potentially unexpected
impact on our current techniques and software infrastructure.

Solution Strategy Given the project challenges outlined above, our approach takes aspects of today’s
programming systems (e.g. MPI and OpenMP) into consideration and aims to improve and expand upon
their capabilities to address the needs of Exascale computing across a range of application areas. This allows
us to attempt to strike a balance between incremental improvements to existing infrastructure along with
more aggressive techniques that seeks to provide innovative solutions to help both manage risk and the ability
to introduce new breakthrough technologies.

In addition, we are working to form close working relationships with the LLVM community to help provide
an impactful and longer term set of technologies to the broader computing community. These activities span
both academic and industry collaborations.

Recent Progress For the Kitsune compiler effort, our recent efforts have focused on supporting an
infrastructure that maps multiple language constructs from Kokkos, FleCSI and OpenMP into an common
intermediate representation that explicitly captures the parallel operations for analysis and optimization (this
is a capability that does not exist in the mainline LLVM infrastructure). This parallel representation may
then also be targeted to different runtime systems (not necessarily those of use by the initial programming
system). See our most recent paper for a discussion of our overall approach [85]. In addition, this work will
be presented at the upcoming EuroLLVM workshop [86]. We will continue to use such events to provide the
larger LLVM community with updates to our lessons learned and example use cases of this technology.

The QUO infrastructure has been recently deployed and used by LANL’s production codes and is in active
daily use. Initial steps have been taken to integrate some of its functionality into the Kokkos programming
system and we have also briefed code teams at LLNL about the use of the library in multi-physics codes.
Our most recent paper on QUO highlights the impact of the library’s use on application performance across
a range of different applications case studies [87].

Next Steps Both QUO and Kitsune are working towards quarterly milestones and multiple software
releases throughout the coming year. At this point in time QUO has reached a production ready state and
many activities are focused on performance tweaks, bug fixes and small additions to the overall capabilities.
Kitsune is still very much an active proof-of-concept compiler toolchain focused on C and C++ with future
plans to add support for Fortran via the Flang project [88]. Even though it is not yet production ready we
are actively releasing source code and the supporting infrastructure for deployment as an exploratory and
early evaluation candidate.

Exascale Computing Project (ECP) 75 ECP-RPT-ST-0001-2018

4.2.3 LLNL ATDM Development Tools Projects

Overview The LLNL ATDM Tools Project came together from two tool efforts at LLNL, ProTools and
AID. The ProTools project provides a productization path for research-quality tool software. The ProTools
team works with tool research groups and provides the software engineering effort needed to move their tools
into production. This includes tasks like writing test suites and documentation, porting to new systems,
adding user-driven features, and integrating tools with application codes. Some of the larger efforts in
ProTools are:

• Ubiquitous Performance Analysis - A suite of tools and visualizations that enable a performance analysis
workflow where tools are built into the application and monitor the performance of every run.

• SCR - The Scalable Checkpoint/Restart library, which abstracts away IO technologies such as burst
buffers for applications.

• mpiFileUtils - A suite of IO-tools based on common UNIX file utilities (cp, rm, cmp, ...), but optimized
for HPC.

• OMPD - A debugging standardization effort for OpenMP.

• Umpire - An abstraction layer for managing the different types of memory found in current and
next-generation systems.

The AID project is developing next-generation debugging and code-correctness tools, with a focus towards
tool viability at Exascale The significant projects in AID are:

• STAT - A debugging tool that can narrow down the debugging search space for hangs and other issues
at massive scales.

• Archer - A tool for automatically identifying race conditions in OpenMP programs.

• ReMPI/Ninja - A suite of tools that can inject noise in applications to expose MPI races, and
record/replay those races when found.

• FLiT - A tool for testing floating point consistency and workloads.

Key Challenges There are several challenging areas that are common not just among the LLNL ATDM
Tool Projects, but across tool efforts through-out the HPC community:

• Platform Portability - Tools are particularly challenging to port to new systems. Unlike applications,
which rely on standards such as OpenMP and MPI, tools are generally built weaker body of standards.
Porting to a new system can involve detailed low-level dives into runtimes and system components.
Tools rarely have platform-independent code bases and require significant effort to bring up on new
systems.

• Application Complexity - In addition to the increasing complexity of systems, applications are growing
in size and complexity. New programming models are increasing the distance between the low-level
machine code that tools generally measure and the high-level code that programmers think about.
Mapping between these layers requires significant infrastructure in each tool.

• Application Adoption - At any one time it can be easier to add a new printf statement rather than learn
a new debugging or performance analysis tool. It has been historically difficult to encourage application
teams to consider tool adoption a priority, though with approaching challenges of next-generation and
Exascale system this trend seems to be changing.

Solution Strategy Specific solutions to the above problems can vary with each instance and tool. Though
there are several high-level trends across the LLNL ATDM Tool Projects:

• Application and Tool Integration - As previously mention, tools can be challenging because they
generally live in a smaller standards space. Some efforts are towards shifting tools into the application
domain, where they can utilize application-level standards and infrastructure. Examples of this from the
Ubiquitous Performance Analysis project and Caliper projects include doing performance attribution

Exascale Computing Project (ECP) 76 ECP-RPT-ST-0001-2018

with application-level annotations rather than binary analysis and DWARF line mappings. Or instead of
building low-impact tool communication infrastructure like MRNet, we can use MPI have the application
team to annotate code with safe communication points.

• Standardization and Co-design - The LLNL ATDM Tool Project is engaging with standards committees
to create tool-specific interfaces in programming models. The recent OMPD work added a interface
for debuggers into OpenMP, which looks likely to be accepted into OpenMP 5.0. Beyond formal
standardization efforts, the LLNL ATDM Tool Projects also work with vendors during system design
to ensure the available of tools on upcoming systems. Team members have recently engaged in the
CORAL project and are working directly with IBM and NVIDIA on providing numerous tools.

• Tool Componentization and Composability - Rather than have tools reinvent the wheel and then stumble
over the same potholes in every system, the LLNL ATDM Tool Projects have striven to make tools that
both share common best-practice components and be composedly with other tools. Gotcha, from the
Ubiquitous Performance Analysis project, is a new component library that does function wrapping and
is being adopted in several other tools. The AID project is building an inter-operable software stack
of debugging tools, where projects like STAT and ReMPI can work together with classical debuggers
like TotalView and DDT. By sharing code and relying on other tool’s strengths we can minimize the
amount of repeated work across the tools community.

• Application Adoption - To help application teams adopt tools, members of the LLNL ATDM Tool
Projects work directly with them through early tool efforts. This can take the form of software
development effort, such as when ProTools team members helped an ASC application adopt SCR. Or it
can be a hand-holding exercise when first running a tool, such as when the AID team helped a math
library identify a significant race condition with Archer.

Recent Progress There are several recent notable achievements from the LLNL ATDM Tools Projects:

• The OMPD standard looks likely to be adopted into the OpenMP 5.0 standard. In addition to the
many OpenMP contributors, The ProTools team worked with the standards group in the LLNL ATDM
Data and Visualization project on this. ProTools focused on the reference implementation and the
standards group on the standards document.

• The ProTools team will soon be releasing the initial version of the Gotcha library, which will provide
other tools (primarily performance analysis tools) with a better way to implement and control function
wrapping.

• The AID project has had several publication on OpenMP race detection[89],[90] and floating point
consistency[91].

Next Steps The ProTools team is starting a major new thrust in the Ubiquitous Performance Analysis
effort. They are aiming to add Caliper into a targeted ASC code, and then build and integrated performance
analysis workflow that brings together caliper and web-based performance visualization. The end result of
this is to have application users running codes, producing behind-the-scenes performance data, and then
application developers browsing and analyzing the performance data with analytic frameworks and novel
visualizations.

The AID team is focusing on vendor interactions and co-design, for both CORAL systems and subsequent
next-generation systems.

Exascale Computing Project (ECP) 77 ECP-RPT-ST-0001-2018

4.2.4 SNL ATDM Tools

Overview The SNL ATDM Tools project is broken into two subprojects: the SNL ATDM DevOps
subproject, and the Sandia ATDM Performance Analysis subproject.

The SNL ATDM DevOps subproject focus is on tools and processes supporting DevOps (Development
Operations) for the ATDM software development efforts. DevOps in the SNL ATDM context is all of the
software infrastructure development, testing support, integration, and deployment work in support of the
ATDM software application and component development teams. The primary activities of this subproject are
to (1) coordinate and prioritize tasks for the various teams that provide DevOps support for ATDM codes,
applications, and customers, (2) develop and help deploy shared build, test, and install infrastructure across
the ATDM codes and projects, (3) define and support development, testing, integration, and other related
workflows for ATDM projects.

The SNL ATDM Performance Analysis subproject is scoped with providing a broad cross-section of
performance-related support activities for the laboratories ATDM efforts. These activities include: (1)
providing support for high-performance, hardware-optimized cross-platform builds, including the generation of
correct hardware compiler options/software defines; (2) performance analysis of benchmarking runs, including
thread and node scaling, on relevant ASC testbeds and platforms, and (3) provision for algorithm/code
modification or editing of run scripts to optimize performance where issues are identified.

The SNL ATDM Performance Analysis subproject also develops profiling and correctness tools which
work with the Kokkos Profiling hooks API. These tools have been developed to provide insight into the
timing of kernels written using Kokkos, as well as data structures utilizing Kokkos parallel containers or
Views. In a number of cases, the profiling tools act as connectors, establishing a link between important
Kokkos performance events and vendor provided tools such as Intel’s VTune, NVIDIA’s NSight and Arm’s
MAP profilers.

Key Challenges The key challenges associated with this project are the extremely aggressive porting and
optimization requirements associated with Sandia’s ATDM efforts. These activities are attempting to port
and help support a minimum of three production applications, as well as multiple mini-applications and
research prototypes to several ASC-relevant platforms. The first-of-a-kind algorithms being used on these
platforms produce complex interactions in the applications that must be fully studied and analyzed to ensure
a high level of performance is being offered to the Sandia’s user base.

Combined with the application development effort, Sandia is investing heavily in the development of
the Trilinos scalable solver stack (used by several codes in ECP and the broader HPC community). The
Performance Analysis activity within ATDM is also providing low-level kernel and runtime optimization
insight to developers in the Kokkos and Trilinos projects. The DevOps activity within SNL ATDM is
providing configuration, build, testing, and workflows tools and processes to keep this stack of software
working on the variety of platforms and configurations.

Solution Strategy The SNL ATDM Tools has the following primary thrusts:

1. Common Build, Test, and Integration Tools ensure scalable DevOps efforts and support.

2. Testing and Integration Workflows ensure smooth and productive development and deployment
efforts for ATDM software on target platforms.

3. High-Performance Applications ensure well optimized application, library and kernel performance
across ASC-relevant computing architectures.

4. Performance Portability ensures performance portability of Sandia ATDM codes across diverse
ASC-relevant computing architectures.

5. Lightweight Performance Tool Infrastructure ensures that lightweight tools exist for rapid
performance analysis or performance issue identification.

The Sandia Performance Analysis sub project was formed from the older Performance Modeling and Analysis
Team in 2015. It’s scope was refined to focus specifically on supporting application development activities

Exascale Computing Project (ECP) 78 ECP-RPT-ST-0001-2018

at the laboratories, with the intent to help provide much stronger levels of performance across the Sandia
software portfolio. The project has provided significant application support since 2015 on topics including
application porting and scaling on the ASC Trinity platform, porting to the ASC CTS-1 commodity clusters
and has most recently been providing support for the forthcoming ASC Sierra platform housed at LLNL.

The Kokkos Profiling tools collection was formed in 2015 resulting from research efforts in several successful
LDRD projects. The experimental interface to Kokkos was prototyped in 2014/5 and has since been the
default configuration when compiling the Kokkos library.

Recent Progress For FY17, the SNL ATDM DevOps subproject completed a number of results: (1)
created a TriBITS prototype build and test system for SPARC; (2) set up ATDM project and issue tracking
utilizing JIRA and JIRA Portfolio; (3) worked to stabilize Trilinos for ATDM customers, and (4) worked
with contractor Kitware to improve CMake/CTest/CDash and adding Fortran support in Ninja, performance,
enhanced CDash. The Sandia Performance Analysis subproject provided the Sandia SPARC and EMPIRE
applications with performance results on: (1) Intel Knights Landing many-core processors; (2) Intel Haswell
multi-core processors; (3) IBM POWER8/NVIDIA P100 CORAL development systems; (4) ASC CTS-1
Broadwell processors, and, (5) early access ARM processors. The results of benchmarking and cross-platform
kernel benchmark times were reported to developers with ATDM including the project leads for SPARC and
EMPIRE as well as the Trilinos solver project.

For the first half of FY18, the DevOps subproject (1) developed integration workflows with Trilinos
for the ATDM SPARC and EMPIRE Apps to shield them from instability in Trilinos and yet still drive
co-development with Trilinos; and (2) set up initial ATDM builds of Trilinos for EMPIRE configuration
submitting to CDash and addressed native Trilinos test suite failures. The Performance Analysis team has
provided benchmark kernel timings for some important classes of kernels on: (1) Intel Skylake multi-core
processors; (2) early-access IBM POWER9/NVIDIA Volta platforms (for CORAL activities), and, (3)
additional ARM processors. The compilation flags and environment configurations have been integrated into
Kokkos and Trilinos for wider community use.

Next Steps Our next efforts are:

1. Complete upgrade of CMake/CTest/CDash: Upgraded CMake/CTest/CDash will provide for
faster builds and tests, better display and better query capability on CDash.

2. Complete ATDM Trilinos builds: Setup of testing on rest of platforms used by EMPIRE and then
extend the ATDM Trilinos build configuration for SPARC.

3. Transition ATDM APPs to use ATDM Trilinos builds: SPARC and EMPIRE builds will
use the same standard ATDM Trilinos build reducing duplicate work maintaining these builds, less
computing resources to run the build, etc.

4. Detailed Build Timing: during FY18 the Performance Analysis subproject is investigating the
timing of complex application builds including the time spent in file input/output, compilation itself,
directory traversal and other metrics. The intention is to identify areas of optimization that will improve
developer productivity (by reducing wait for builds to complete).

5. Additional Benchmarking: additional platforms and more extensive benchmarking activities are
currently underway, particularly on CORAL POWER9 development systems. These studies will have
improve the “day-one” performance of Sandia’s application portfolio on the pre-Exascale Sierra platform
when it is released to users during 2018.

Exascale Computing Project (ECP) 79 ECP-RPT-ST-0001-2018

4.2.5 Exascale Code Generation Toolkit

Overview Our project addresses the development of HPC software for exascale and similarly complex
architectures. Generated code may be modified, wrapped in application specific APIs, or be checked into the
user’s application repository. Inputs to the code generation tools we have developed are either application
code or simplified application code that represents naive implementations of algorithms. Input languages
we are supporting include both legacy and modern versions of Fortran, C, and C++ (e.g., F77, F2008,
F2015, C89, C99, C11, C++98, C++11, C++14, C++17, etc.). The output is generated code in the same
language, but modified to address essential hardware-specific architectural features. We are supporting
common language dialects including: UPC, OpenMP (for both C, C++, and Fortran), CUDA, and OpenCL.

Key Challenges Our project addresses the development of HPC software for exascale and similarly complex
architectures. The approach in our project supports only the generation of code to simplify the job of the
developers, and as such users are given complete control over how to use our code generation tools. However,
this makes our project especially difficult because we must read and rewrite the user’s source code application.
This step requires significant compiler technology: analysis and transformations at the source code level so
that it can leverage the vendor’s compiler.

We operate using a source-to-source approach so that the target architecture’s compiler (vendor compiler)
may be used to full advantage. It is expected that the vendor’s compiler will be best optimized (low level
optimizations) to the vendor’s architecture. However, the structure of code written (at a high level) to take
advantage of the vendor compiler’s optimization can be exceedingly complex, vary widely between vendors,
and is thus well better suited to automated code generation.

Solution Strategy Figure 29 illustrates the approach used to process application code and automate
transformations to support either performance optimization or correctness checking. Our project is developing

Figure 29: Approach to processing user application code with multiple tools
to support optimization and correctness checking.

several tools for generating code: PolyOpt (a polyhedral optimizations program transformation engine
capable of fully automating highly complex loop transformations), AutoPar (an automatic parallelization
tool that inserts OpenMP directives into serial codes), CodeThorn (an award winning code correctness tool
built using ROSE and SPOT), PolyCheck (a code correctness tool specific to polyhedral optimizations),
and ROSE (a widely used compiler infrastructure for building specialized compiler tools). Our tools allow
users to easily specify portions of an input application and automatically generate semantically equivalent,
but higher performing code variants; including the ability to generate a multiple variants that traverse

Exascale Computing Project (ECP) 80 ECP-RPT-ST-0001-2018

a space of optimizations (e.g., loop tiling sizes, loop fusion, loop fission alternatives, etc.). The PolyOpt
polyhedral optimizer is being enhanced with pattern-specific optimization and code generation strategies to
address important patterns found in ECP codes. Stand-alone code generators developed previously by us
for stencil computations and tensor contractions are being integrated with PolyOpt and their capabilities
enhanced and hardened (StencilGen and TensorGen). The use of CodeThorn and PolyCheck have already
been demonstrated for the verification of correctness of such automatically generated code.

Recent Progress We have made a release of TensorGen to the NWChem team and it has been used in
their NWChem production release this past Fall (Fall 2017).

The StencilGen code generator takes as input a DSL specification of stencil functions and their domains,
and creates CUDA code from it. The tool employs fusion, streaming, and overlapped tiling to achieve
high performance. In order to avoid register spills for complex stencils, the tool also performs statement
reordering that takes as input straight-line CUDA code for a multi-statement stencil and models it as a DAG
of expression trees. The statements are then reordered to minimize register pressure [92].

The AutoPar tool accepts C/C++ serial programs as input and automatically generates OpenMP loop
directives. We have continued to work on the CPU cost model to guide AutoPar’s automatic parallelization.
We have created a model based on the roofline model, and an existing tool in ROSE (the Arithmetic intensity
tool) has been improved to provide key information for our model. We also added one option to use inlining
in order to support loops with simple C function calls. Several microbenchmarks, including EPCC and
STREAM, have been investigated and used to extract hardware and software metrics needed in our model.

CodeThorn takes as input polyhedral parallelized loops generated by the tool PolyOpt and checks whether
the optimized loops are equivalent to the original (non-optimized) loops. We analyzed the availability of
optimizable code patterns for verification in three proxy apps (AMG2013, CoMD, LULESH) and found 282
optimizable patterns that can serve as input to our verification. We extended the scope of the covered C++
subset for verification to support changes in the PolyOpt generated optimized code. We also extended the
representation of program states to take pointers to dynamic data structures into account.

We have been developing the other tools mentioned above, adding supporting features, and testing to
them. We gave a demo of these tools at the recent ECP all-hands meeting in February, 2018; and we distribute
the working versions of these tools that we demonstrated at the meeting. These tools are regularly updated
with ongoing work and released as part of Continuous Integration (CI) processes. Most tools are released as
part of the ROSE distribution to simplify the testing and release process.

We have been adding new Fortran support to ROSE as part of our ECP Fortran support. We have also
started the C++17 support in ROSE. We have compiled most of the ECP proxy applications as part of initial
first year work. We now test the ROSE C and C++ compiler infrastructure against commercial compiler
tests suits and it performs similarly to commercial compilers in initial testing for analysis tools.

Next Steps For StencilGen, we will develop several heuristics for fusion, streaming, and tiling based
on architectural characteristics, as well as machinery to systematically explore various compositions of
optimizations and optimization parameters. We will continue to work with the NWChem team at PNNL to
support their computational code generation requirements. For CodeThorn we will (i) extend the evaluation
with proxy apps and (ii) improve the reporting of detected semantic differences in the PolyOpt optimized
code in comparison to the original code.

We are also working with the AMReX ECP team to support analysis and transformation of their
application codes using our tools and future versions of them with additional features. The AMReX team
is in turn also supporting multiple ECP application teams, to which all of our work is expected to apply
directly.

Exascale Computing Project (ECP) 81 ECP-RPT-ST-0001-2018

4.2.6 Exa-PAPI

Overview The Exascale Performance Application Programming Interface (Exa-PAPI) project builds on
the widely deployed and widely used Performance API (PAPI) and extends it with performance counter
monitoring capabilities for new and advanced ECP hardware and software technologies, fine-grained power
management support, and functionality for performance counter analysis at task granularity for task-based
runtime systems. Exa-PAPI also adds events that originate from the ECP software stack (i.e., communication
libraries, math libraries, task runtime systems, etc.) and, as a result, extends the notion of performance
events from strictly hardware-related ones to include software-based information.

Exa-PAPI is essential for ECP because it enables the ECP application community to monitor both types
of performance events—hardware- and software-related—in a uniform way, through one consistent PAPI
interface. On the hardware side, Exa-PAPI provides access to a wide range of new events for the extreme-scale
platforms that will form the basis of exascale computing. Furthermore, it provides a finer-grain measurement
and control of power, thus offering software developers a basic building block for dynamic application
optimization under power constraint. In addition to providing hardware counter based information, Exa-PAPI
integrates a standardizing layer for monitoring software-defined events (SDEs), which will expose the internal
behavior of runtime systems and libraries to the applications. Addressing the gap of software-defined event
monitoring—and enabling monitoring of both types of performance events though Exa-PAPI—stands to offer
a transformative impact on performance analysis and application development as a whole.

Key Challenges Widely deployed and widely used, PAPI has established itself as fundamental software
infrastructure in every application domain where improving performance can be mission critical. However,
processor and system designs have been experiencing radical changes. Systems now combine multi-core CPUs
and accelerators, shared and distributed memory, PCI-express and other interconnects, and power efficiency
is emerging as a primary design constraint. These changes pose new challenges and bring new opportunities
to PAPI. At the same time, the ever-increasing importance of communication and synchronization costs in
parallel applications, as well as the emergence of task-based programming paradigms, pose challenges to the
development of performance-critical applications and create a need for standardizing performance events that
originate from various ECP software layers.

Solution Strategy The Exa-PAPI project prepares the PAPI library to stand up to the challenges posed
by exascale systems by: (1) widening its applicability and providing robust support for hardware resources
that are currently out of PAPI’s scope; (2) supporting new programming paradigms, such as task-based
systems, by adding functionality for performance counter analysis at task granularity (as opposed to core and
thread granularity); (3) extending PAPI to support software-defined events, in addition to the traditional
hardware-based events; and (4) applying semantic analysis to hardware counters so that the application
developer can better make sense of the ever-growing list of raw hardware performance events that can be
measured during execution.

The Exa-PAPI effort delivers new PAPI components to handle the wide range of new hardware and
software events for the extreme scale platforms that will form the basis of exascale computing. To achieve
this, Exa-PAPI implements a variety of monitoring and sampling capabilities for the different technologies,
which are exported to the ECP application community. Exa-PAPI also provides finer-grain measurement
and control of power, thus offering software developers a basic building block for dynamic application
optimization under power constraint. Other hardware efforts in Exa-PAPI are the development of components
for monitoring network interconnect events, as well as components targeted at the deep and heterogeneous
memory hierarchies that we are already seeing in new architectures.

Recent Progress The Exa-PAPI hardware and power effort began with the implementation of new PAPI
components enabling Intel Knights Landing (KNL) hardware counter and power management support. In
December 2017, the latest version of PAPI (5.6.0) was shipped, releasing two new components that are fully
integrated into the PAPI library for KNL core and uncore support. Additionally, PAPI ships with a powercap
component for power/energy measurement and control. This development delivers two improvements. First,
in the past, PAPI power components supported only reading power information. The new component exposes
running average power limit (RAPL) functionality to allow users to read and write power. Second, the

Exascale Computing Project (ECP) 82 ECP-RPT-ST-0001-2018

original PAPI power component accessed the RAPL model-specific registers (MSRs) directly, and, therefore,
reading power data required root privileges. The new PAPI power component uses the powercap interface
that comes built-in with the Linux kernel. The purpose of this interface is to expose the RAPL settings to
user-space. Therefore, power reading is possible without any superuser privileges—only Linux kernel version
3.13 (or higher) is required.

Since the concept of writing (or capping) power is new to PAPI, we studied numerical building blocks
of varying computational intensity, and used the PAPI powercap component to detect power optimization
opportunities. We experimented with a wide range of power caps on the KNL architecture to reduce the
power usage for different numerical kernels while keeping the execution time constant so that real energy
savings can be achieved. Figure 30 shows one example where we use the Jacobi iterative method to solve a
finite difference discretization of the Helmholtz equation. While the default power consumption is around
185 Watts, with power capping, we were able to improve the energy efficiency by 25% without any loss in
time-to-solution. All our findings have been published in a conference paper [93] and a journal paper [94].

Figure 30: Average power measurements (Watts on y axis) of Jacobi algorithm
on a 12,800 x 12,800 grid for different power caps. (A) FLAT mode: data allocated
to DDR4; (B) FLAT mode: data allocated to MCDRAM

On the software-defined events front, we have already proposed an API (publicly available on Jira: https:
//jira.exascaleproject.org/secure/attachment/12251/2017_SDE_API_report.pdf) and received sig-
nificant feedback and requests for changes by members of the runtime and library communities, which we
have incorporated. We have also developed a prototype implementation of an SDE component in PAPI,
which we are using to integrate SDE support in various ECP projects, such as:

1. ByFL (HT-DSE): https://bitbucket.org/jagode/byfl_papi_sde

2. PaRSEC (2.3.1.09 STPM11-ParSEC): https://bitbucket.org/herault/parsec/branch/PAPI-SDE

3. PEEKS (2.3.3.10 STMS11-PEEKS): https://bitbucket.org/icl/magma (branch: PAPI_SDE)

4. NWchemEx (2.2.1.02 ADSE11-NWChemEx): https://bitbucket.org/jagode/nwchem_papi_sde

Next Steps Our next efforts will focus on:

1. Development of a PAPI component for IBM Power9 Hardware Counter Support: Add
support for (1) core performance events, which are specific to each core; and (2) shared events, which
monitor the performance of node-wide resources that are shared between cores. Access to shared events
require elevated privileges. However, IBM’s official route for providing access to shared events will be
through the Performance Co-Pilot (PCP) for non-root users. Thus, one of the Exa-PAPI efforts is to
develop a PAPI-PCP component so that all users can access Power9 shared events through PAPI.

2. Release of PAPI’s SDE component, and integration of SDEs with other ECP efforts: Refine
the PAPI SDE prototype implementation based on feedback from the ECP community and experience
acquired from instrumenting ECP projects. Instrument ECP libraries, runtimes, and applications, such
as PaRSEC, PEEKS, and NWChem to use software-defined events to export performance information.

Exascale Computing Project (ECP) 83 ECP-RPT-ST-0001-2018

https://jira.exascaleproject.org/secure/attachment/12251/2017_SDE_API_report.pdf
https://jira.exascaleproject.org/secure/attachment/12251/2017_SDE_API_report.pdf
https://bitbucket.org/jagode/byfl_papi_sde
https://bitbucket.org/herault/parsec/branch/PAPI-SDE
https://bitbucket.org/icl/magma
https://bitbucket.org/jagode/nwchem_papi_sde

4.2.7 2.3.2.07-YTune

Overview We are developing tools and an application development workflow that separates a high-level
C/C++/FORTRAN implementation from architecture-specific implementation (OpenMP, CUDA, etc.),
optimization, and tuning. This approach will enable Exascale application developers to express and maintain
a single, portable implementation of their computation, legal code that can be compiled and run by using
standard tools. The autotuning compiler and search framework will transform the baseline code into a
collection of highly-optimized implementations.Thus, autotuning will mitigate the need for extensive manual
tuning.

Autotuning is essential for ECP in providing performance portability on Exascale platforms. Due
to significant architectural differences in ECP platforms, attaining performance portability may require
fundamentally different implementations of software – different strategies for parallelization, loop order, data
layout, and exploiting SIMD/SIMT. A key concern of ECP is the high cost of developing and maintaining
performance-portable applications for diverse Exascale architectures, including manycore CPUs and GPUs.
Therefore, if Exascale application developers are expressing their computation and separating that from its
mapping to hardware, autotuning can automate this mapping and achieve performance portability.

Key Challenges Autotuning has the potential to dramatically improve the performance portability of
Petascale and Exascale applications. To date, autotuning has been used primarily in high-performance
applications through tunable libraries or previously tuned application code that is integrated directly into the
application. If autotuning is to be widely used in the HPC community, support for autotuning must address
the software engineering challenges, manage configuration overheads, and continue to demonstrate significant
performance gains and portability across architectures. In particular, tools that configure the application
must be integrated into the application build process so that tuning can be reapplied as the application and
target architectures evolve.

Figure 31: Y-TUNE Solution Approach.

Solution Strategy We are developing pluggable software infrastructure that incorporates autotuning at
different levels: compiler optimization, runtime configuration of application-level parameters and system
software. To guarantee success in the ECP time frame, we are collaborating with application teams to impact
performance of their codes.

The autotuning compiler strategy revolves around the approach of the CHiLL autotuning compiler, which
has the following distinguishing features: (1) Composable transformation and code generation, such that the
same tool can be applied to multiple different application domains; (2) Extensible to new domain-specific
transformations that can be represented as transformations on loop nest iteration spaces are also composable
with existing transformations; (3) Optimization strategies and parameters exposed to autotuning: By exposing
high-level expression of the autotuning search space as transformation recipes, the compiler writer, an expert
programmer or embedded DSL designer can directly express how to compose transformations that lead to
different implementations. A part of our efforts in ECP are to migrate these capabilities of CHiLL into the
Clang/LLVM open-source compiler.

We have developed a brick data layout library and code generator for stencil computations within
CHiLL. Recent trends in computer architecture that favor computation over data movement incentivize
high-order methods. Paradoxically, high-order codes can be challenging for compilers/optimization to attain

Exascale Computing Project (ECP) 84 ECP-RPT-ST-0001-2018

high performance. Bricks enable high performance and make fine-grained data reuse and memory access
information known at compile time. The SIMD code generation achieves performance portability for high-
order stencils for both CPUs with wide SIMD units (such as Intel Knights Landing) and GPUs. Integration
with autotuning achieves performance that is close to roofline performance bounds for both architectures.

The Search using Random Forests (SuRF) search framework is a separate tool in Y-Tune that optimizes
the search over an autotuning search space. While SuRF provides support to CHiLL for compiler-directed
autotuning, it can also be integrated directly with applications and runtimes to search over application
parameters and alternative code variants. SuRF is an asynchronous search framework that consists of
sampling a small number of input parameter configurations and progressively fitting a surrogate model over
the input-output space until exhausting the user-defined maximum number of evaluations. The framework is
designed to operate in the master-worker computational paradigm, where one master node fits the surrogate
model and generates promising input configurations and worker nodes perform the computationally expensive
evaluations and return the outputs to the master node. We implemented MPI-based and scheduler-based
master-worker approaches.

Recent Progress We have pursued the following main activities since the beginning of 2018:
Autotuning capability in LLVM: The key idea is to support the use of pragmas in the C++ source to guide

transformations to be applied. These can include the types of transformation recipes used in CHiLL, but
also parallelization directives for OpenMP and OpenACC that would interact with SOLLVE and PROTEAS.
Our initial focus is the implementation of user/tool-directed optimizations in Polly, which is a polyhedral
framework in LLVM with some similar features to CHiLL. An initial plan for pragmas in Clang and LLVM
metadata has been developed. Several existing open-source LLVM projects allowing for just-in-time (JIT)
compilation of C++ code have been identified and are being evaluated for use with autotuning. A summer
intern has been identified who will work on the JIT/autotuning explorations.

SuRF for SuperLU and QMCPACK: We focused on testing and hardening SuRF for tuning SuperLU package.
We used 6 matrices that come from different DOE applications and ran SuRF in an asynchronous mode with
up to 32 nodes. We compared the results from SuRF to those from OpenTuner. On all instances tested,
we found that SuRF obtains comparable results but in half the time of OpenTuner. We also observed that
SuRF found high quality solutions in short computation time and used the remaining time for neighborhood
exploration. Therefore, we implemented early stopping criterion. We also did single node tuning experiments
with QMC. Since the current search space of QMCPACK is rather small, we did not evaluate it at scale.
Currently, we are working with the QMCPACK developers to expose more parameters. Recently, we developed
stopping criterion based on local convergence and expected improvement over time. This allows the search to
terminate in shorter computation time. Currently, we are expanding the search for multinode autotuning
where each evaluation spans multiple nodes.

Brick Library: We developed a code generator for the Brick Data Layout library for stencils that is performance-
portable across CPU and GPU architectures, and addresses the needs of modern multi-stencil and high-order
stencil computations. The key components of our approach that lead to performance portability are (1) a
fine-grained brick data layout designed to exploit the inherent multidimensional spatial locality common to
stencil computations; (2) vector code generation that can either target wide SIMD CPU instructions sets
such as AVX-512 and SIMT threads on GPUs; and, (3) integration with autotuning framework to apply
architecture-specific tuning. For a range of stencil computations, we show that it achieves high performance
for both the Intel Knights Landing (Xeon Phi) CPU, and the NVIDIA P100 (Pascal) GPU.

Next Steps In the near future, we will release the CHiLL autotuning compiler, and migrate SW4 to use
the brick data layout. We will continue the transition of CHiLL capabilities to LLVM. In SuRF, we plan to
explore multinode search, and integrate SuRF into the compiler-directed autotuning we are doing.

Exascale Computing Project (ECP) 85 ECP-RPT-ST-0001-2018

4.2.8 HPCToolkit

Overview The HPCToolkit project is working to develop performance measurement and analysis tools
to help ECP software developers understand where and why their programs do not fully exploit hardware
resources within and across nodes of extreme-scale parallel systems. Key deliverables of the project are a
suite of software tools that developers need to measure and analyze the performance of parallel applications
as they execute on existing ECP testbeds and new technologies needed to measure and analyze performance
on forthcoming Exascale systems.

To provide a foundation for performance measurement and analysis, the project team is working with
community stakeholders, including standards committees, vendors, and open source developers to improve
hardware and software support for measurement and attribution of application performance on extreme-scale
parallel systems. The project team has been engaging vendors to improve hardware support for performance
measurement in next generation systems and working with other software teams to design and integrate new
capabilities into operating systems, runtime systems, communication libraries, and application frameworks that
will enhance the ability of software tools to accurately measure and attribute code performance on extreme-
scale parallel systems. Using emerging hardware and software interfaces for monitoring code performance, the
project team is working to extend capabilities to measure computation, data movement, communication, and
I/O as a program executes to pinpoint scalability bottlenecks, evaluate resource consumption, and quantify
inefficiencies.

Key Challenges In recent years, the complexity, diversity, and the rate of change of architectures for
extreme-scale parallel systems have increased dramatically. For higher efficiency, heterogeneous designs
that couple multicore processors with accelerators and employ more complex memory hierarchies have been
increasing in importance. In addition, the DOE is purposefully pursuing multiple independent architectural
designs for next generation parallel systems as part of risk mitigation. For performance tools, the need to
support multiple diverse architectural paths significantly increases tool complexity. At the same time, the
complexity of applications is increasing dramatically as developers struggle to expose billion-way parallelism,
map computation onto heterogeneous computing elements, and cope with the growing complexity of memory
hierarchies. While application developers can employ abstractions to hide some of the complexity of emerging
parallel systems, performance tools must be intimately familiar with all of the idiosyncratic features added to
these systems to improve performance or efficiency, develop measurement and analysis techniques that assess
how well these features are being exploited, and then relate these measurements back to software to create
actionable feedback that will guide developers to improve the performance, efficiency, and scalability of their
applications.

Solution Strategy Development of HPCToolkit as part of ECP is focused on preparing it for production
use at Exascale by enhancing it in several ways. First, the team is adding new capabilities to measure and
analyze interactions between software and key hardware subsystems in extreme-scale platforms, including
more complex memory hierarchies and accelerators. Second, the team is working to improve performance
attribution given optimized code for complex node-level programming models used by ECP developers,
including OpenMP and template-based programming models such as LLNL’s RAJA and Sandia’s KOKKOS.
To support this effort, the project team is enhancing the Dyninst binary analysis toolkit, which is also used by
other ECP tools. Third, the team is improving the scalability of HPCToolkit so that it can be used to measure
and analyze extreme-scale executions. Fourth, the project team is working to improve the robustness of the
tools across the range of architectures used as ECP platforms. Fifth, the team will enhance HPCToolkit’s
user interfaces to help analyze performance bottlenecks on extreme-scale platforms. Finally, the project team
will work other ECP teams to ensure that they benefit from HPCToolkit’s capabilities to measure, analyze,
attribute, and diagnose performance issues on ECP testbeds and forthcoming Exascale systems.

Recent Progress Over the last year, the HPCToolkit project has significantly enhanced the ability to
measure and analyze application performance.

• The project team added a new measurement substrate to HPCToolkit to measure performance using
the Linux perf events interface. Using perf events enables HPCToolkit to measure operating system

Exascale Computing Project (ECP) 86 ECP-RPT-ST-0001-2018

(a) HPCToolkit kernel activity performance metrics.

user
space

kernel
space

call
chain

(b) HPCToolkit GPU offloaded performance.

CPU calling context

 
RAJA templates

on GPU

function calls in full context
inlined C++ templates
loops
functions/templates on GPU

Figure 32: The December 2017 HPCToolkit release supports measuring and
attributing performance metrics of kernel activity on behalf of an application.
HPCToolkit now measures and attributes the performance of computation of-
floaded to GPUs using LLNL’s RAJA template-based programming model.

activity and thread blocking in addition to application execution. Figure 32a displays a screenshot of
HPCToolkit’s code-centric user interface that shows how HPCToolkit reports information about kernel
activity on behalf of an application as part of an application’s performance.

• To accurately attribute code performance to elements of complex, parallel software frameworks that
have been transformed by optimizing compilers, HPCToolkit employs an approach that combines
information recorded by compilers about line maps and the provenance of inlined code with direct
analysis of machine code to recover information about a program’s control flow. Over the past year,
the project team has developed improved techniques for recovering control flow graphs from machine
code and employed them to relate application performance to inlined functions, templates, and loops
in highly optimized code on both host processors and attached accelerators. Figure 32b shows the
precise attribution of performance measurements to C++ templates employed as part of LLNL’s RAJA
portability layer.

• The project team has developed novel capabilities for measurement, analysis, and attribution of
applications that employ graphics processing units (GPUs) as accelerators. This work includes leading
the design of the OMPT tool application programming interface as part of the emerging OpenMP 5.0
standard, developing a measurement infrastructure as part of libomptarget—an open source library for
offloading code onto accelerators, enhancing HPCToolkit to ingest measurement data from accelerators,
and extending HPCToolkit to analyze binaries for NVIDIA’s GPUs to attribute performance of offloaded
code. Figure 32b illustrates how HPCToolkit can attribute the performance of code offloaded onto a
GPU to the host context that offloaded the computation.

Next Steps The next steps in the project are to:

• Work with the OpenMP standards committee to finalize tool interfaces as part of the emerging OpenMP
standard.

• Complete and deploy implementation of HPCToolkit’s support for measurement and analysis of code
offloaded onto NVIDIA GPUs.

• Integrate new support for task-based parallelism developed as part of the project’s Dyninst binary
analysis infrastructure into HPCToolkit’s binary analyzer to accelerate analysis of large executables.

• Complete work on data-centric performance analysis capabilities that measure and attribute data
movement costs to program variables.

• Complete and deploy a framework for regression testing of HPCToolkit.

• Work with DOE and Intel on performance measurement technologies for the A21 Exascale platform.

Exascale Computing Project (ECP) 87 ECP-RPT-ST-0001-2018

4.2.9 PROTEAS: Programming Toolchain for Emerging Architectures and Systems

Key Challenges: Programmer productivity and performance portability are two of the most important
challenges facing applications targeting future Exascale computing platforms. Application developers targeting
evolving ECP architectures will find it increasingly difficult to meet these dual challenges without help
from integrated capabilities that allow for flexibility, composability, and interoperability across a mixture of
programming, runtime, and architectural components. In particular, an integrated programming toolchain
is critical for Exascale delivery. First, it will provide a programming pathway to anticipated Exascale
architectures by addressing programmability and portability concerns of emerging technology trends seen in
pre-procurement machines. It will also enable ECP applications teams to explore programming options to find
the most effective and productive approaches without constraining programming models or software solutions.
Second, an integrated programming framework strategy will deliver solutions that will be further refined
for the architecture capabilities known to be in the system procurement. This is essential for maintaining
developer productivity and attaining performance portability as ECP requirements evolve.

Solution Strategy: The PROTEAS (PROgramming Toolchain for Emerging Architectures and Systems)
project is a strategic response to the continuous changes in architectures and hardware that are defining
the landscape for emerging ECP systems. PROTEAS is a flexible programming framework and integrated
toolchain that will provide ECP applications the opportunity to work with programming abstractions and to
evaluate solutions that address the Exascale programming challenges they face. Specifically, the PROTEAS
objectives are to

1. Provide productive and performance-portable programming solutions based on directive-based method-
ologies that support current language paradigms and flexible prototyping of interfaces specifically
directed at heterogeneous and manycore processors, deep memory hierarchies, and nonvolatile memory
systems (NVM);

2. Provide integrated performance assessment solutions for these programming systems that will enable
automatic performance analysis and performance-driven optimization;

3. Provide an integrated programming toolchain that is powerful enough to prototype the above solutions,
while flexible enough to extend its functionality over time;

4. Refine our toolchain and solutions through engagement with ECP applications teams who will evaluate
prototypes, provide feedback, promote application readiness, and facilitate use of ECP prototype and
eventual production machines; and,

5. Champion our successful solutions in ECP procurements, community standards, and open-source
software stacks.

Our team has started with a strong existing base of relevant technological and software capabilities.
Importantly, our solutions are based on our significant, continuing work with LLVM, ARES HLIR, OpenARC,
and TAU. We have extensive experience and a demonstrated track record of accomplishment in all aspects
of this proposed work including existing software deployments, interaction with application teams, vendor
interaction, and participation in open source community and standards organizations.

Our strong emphasis on delivering an effective toolchain to application developers within the next few years
emphasizes the importance of adopting an integrated programming solution that will be further refined for
the architecture capabilities known to be in the Exascale system procurement. We will develop an integrated
system (i.e. compilers, runtime systems, debuggers, and performance tools) suitable for deployment in the
2019 timeframe. The experience gained from this development will inform vendor collaborations, proposals to
standards committees, and existing open source software to make key elements of our developed technology
commercially available for ECP deployment in the 2021 timeframe.

While PROTEAS will be oriented towards foreseeable architectural trends, it will not lock in to specific
choices that will constrain what new hardware features it can address. Rather, it is important for the
programming framework to embody interoperability, open interfaces, and flexibility in the toolchain, allowing
it to pursue high-value solutions as opportunities arise and thereby achieve Exascale performance potential.

Exascale Computing Project (ECP) 88 ECP-RPT-ST-0001-2018

Recent Progress: Our recent work has focused on five topics:

1. OpenACC and Clacc. Develop production-quality, standard-conforming OpenACC compiler and runtime
support as an extension of clang/LLVM. See §4.2.12.

2. Papyrus for portability across NVM architectures. Develop a portable interface to NVM architectures
to provide massive, persistent data structures as required by many applications. See §4.2.11.

3. Performance analysis with Tau by adding additional functionality for new architectures. Improve a
widely-used performance analysis framework by adding functionality for new architectures and software
systems. See §4.2.10.

4. Improving LLVM. In collaboration with numerous other ECP projects, PROTEAS is contributing
improvements to the LLVM compiler infrastructure. These improvements include simple bugfixes to the
existing infrastructure, monitoring Flang progress, developing Clacc (see §4.2.12), and contributing to
the development of a new parallel intermediate representation (see https://github.com/Parallel-IR/
llvm-pir/wiki).

5. Outreach and collaboration with ECP applications teams. We have interacted with over a dozen
applications teams to help prepare their applications for ECP. See §4.2.12, §4.2.11, and §4.2.10.

Next Steps: Our next efforts are:

1. Clacc. Complete Clacc support for a prescriptive interpretation of OpenACC by lowering OpenACC
directives to use the existing LLVM OpenMP infrastructure.

2. Papyrus. Improve support for data compress and encryption to provide enhanced storage reduction
and performance improvements, and security for sensitive data, respectively.

3. Tau. Improve performance instrumentation for deep memory hierarchies in Tau, focusing primarily on
KNL MCDRAM and NVM.

4. LLVM Parallel IR. Develop a conceptual prototype for mapping LLVM Clang operations to the proposed
Parallel IR, and implement a prototype.

Exascale Computing Project (ECP) 89 ECP-RPT-ST-0001-2018

https://github.com/Parallel-IR/llvm-pir/wiki
https://github.com/Parallel-IR/llvm-pir/wiki

4.2.10 PROTEAS — TAU Performance System

Overview The TAU Performance System is a versatile profiling and tracing toolkit that supports perfor-
mance instrumentation, measurement, and analysis. Figure 33 gives an example of using TAU’s parallel
profile analysis tool, ParaProf. It is a robust, portable, and scalable performance tool for use in parallel
programs and systems over several technology generations. It is a ubiquitous performance tool suite for
shared-memory and message-passing parallel applications written in C++, C, Fortran, Java, Python, UPC,
and Chapel. In the PROTEAS project, TAU is being extended to support compiler-based instrumentation
for the LLVM C, C++, and Fortran compilers using higher-level intermediate language representation. TAU
is also targeting support for performance evaluation of directive based compilation solutions using OpenARC
and it will support comprehensive performance evaluation of NVM based HPC systems. Through these and
other efforts, our objective to better support parallel runtime systems such as OpenMP, OpenACC, Kokkos,
and CUDA in TAU.

Key Challenges Scalable Heterogeneous Computing (SHC) platforms are gaining popularity, but it is
becoming more and more complex to program these systems effectively and to evaluate their performance at
scale. Performance engineering of applications must take into account multi-layered language and runtime
systems, while mapping low-level actions to high-level programming abstractions. Runtime systems such as
Kokkos can shield the complexities of programming SHC systems from the programmers, but pose challenges to
performance evaluation tools. Better integration of performance technology is required. Exposing parallelism
to compilers using higher level constructs in the intermediate language provides additional opportunities for
instrumentation and mapping of performance data. It also makes possible developing new capabilities for
observing multiple layers of memory hierarchy and I/O subsystems, especially for NVM-based HPC systems.

Solution Strategy Compilers and runtime systems can expose several opportunities for performance
instrumentation tools such as TAU. For instance, using the OpenACC profiling interface, TAU can tap into a
wealth of information during kernel execution on accelerators as well measure data transfers between the
host and devices. This can highlight when and where these data transfers occur and how long they last. By
implementing compiler-based instrumentation of LLVM compilers with TAU, it is possible to how the precise
exclusive and inclusive duration of routines for programs written in C, C++, and Fortran. Furthermore, we
an take advantage of the Kokkos profiling interface to help map lower level performance data to higher level
Kokkos constructs that are relevant to programmers. The instrumentation at the runtime system level can
be achieved by transparently injecting the TAU Dynamic Shared Object (DSO) in the address space of the
executing application. This requires no modification to the application source code or the executable.

Figure 33: TAU’s ParaProf profile browser shows the parallel performance of
the AORSA2D application.

Exascale Computing Project (ECP) 90 ECP-RPT-ST-0001-2018

Recent Progress

1. Compiler-based instrumentation: Added support for compiler-based instrumentation in TAU for
LLVM Clang and Flang compilers on IBM Power 9, Intel x86 64, and Cray XC systems.

2. Kokkos Added support for the Kokkos profiling interface in TAU by extending the tau exec tool that
preloads the TAU DSO in an uninstrumented binary and applied it to ECP benchmarks.

3. CANDLE Extended TAU to support performance evaluation of Python and CUDA and applied it to
evaluate the performance of the CANDLE ECP Benchmarks on IBM Power and Cray XC systems.

4. Improved CUDA and OpenMP support Added support for newer GPUs and enhancements to
the CUPTI profiling interface in TAU. Updated the OpenMP Tools Interface support in TAU.

Next Steps

1. NVM instrumentation Design and implement support for supporting deep memory hierarchies in
TAU for supporting MCDRAM based systems. This includes support for memkind hbm-malloc and
Fortran FASTMEM directives.

2. PHIRE Design and implement support for instrumentation of higher level PHIRE intermediate
language constructs in TAU.

3. Outreach Outreach activities to demonstrate comprehensive performance evaluation support in TAU
for OpenARC, LLVM, CUDA, Kokkos, and NVM based programming frameworks for SHC platforms.

Exascale Computing Project (ECP) 91 ECP-RPT-ST-0001-2018

4.2.11 PROTEAS — PAPYRUS: Parallel Aggregate Persistent Storage

Overview Papyrus is a programming system that provides features for scalable, aggregate, persistent
memory in an extreme-scale system for typical HPC usage scenarios. Papyrus provides a portable and
scalable programming interface to access and manage parallel data structures on the distributed NVM storage.
Papyrus allows the programmers to exploit large aggregate NVM space in the system without handling
complex communication, synchronization, replication, and consistency models. Papyrus consists of three
components, virtual file system (VFS) [95], C++ template container library (TCL) [95], and key-value store
(KV) [96]. (1) PapyrusVFS provides a uniform aggregate NVM storage image for the different types of NVM
architectures. It presents an illusion of a single large NVM storage for all NVM devices available in the
distributed system. Unlike other traditional kernel-level VFSs, PapyrusVFS is a lightweight user-level VFS,
which is provided as a library so that applications can link to or dynamically load it. PapyrusVFS implements
a subset of POSIX API related to file I/O. (2) PapyrusTCL provides a high-level container programming
interface whose data elements can be distributed to multiple NVM nodes. PapyrusTCL provides three
containers, including map, vector, and matrix, implemented as C++ templates. PapyrusTCL is built on
top of PapyrusVFS. This enables PapyrusTCL to be decoupled from a specific NVM architecture and to
present a high-level programming interface whose data elements are distributed across multiple NVM nodes
transparently. (3) PapyrusKV is a novel embedded KVS implemented specifically for HPC architectures
and applications to provide scalability, replication, consistency, and high performance, and so that they can
be customized by the application. It stores keys and values in arbitrary byte arrays across multiple NVMs.
PapyrusKV provides configurable consistency technique controlled by the application during the program
execution dynamically to meet application-specific requirements and/or needs. It also supports fault tolerance
and streamlined workflow by leveraging NVM’s persistence property.

Key Challenges In HPC, NVM is quickly becoming a necessary component of future systems, driven, in
part, by the projections of very limited DRAM main memory per node and plateauing I/O bandwidth. More
concretely, recently-announced DOE systems, such as NERSC’s Cori, LANL/Sandia’s Trinity, LLNL’s Sierra,
OLCF’s Summit, TACC’s Stampede2, and ALCF’s Theta, include some form of NVM. This NVM will be
used in two fundamental ways. First, it will be used as a cache for I/O to and from the traditional HDD-based
external parallel file systems. In this case, most scientists believe that the caching can be implemented
transparently, shielding complexity from the applications and users. Second, NVM will be used as an extended
memory to provide applications with access to vast amounts of memory capacity beyond what is feasible
with DRAM main memory. More interestingly, in HPC, this extended memory can be aggregated into a
much larger, scalable memory space than that provided by a single node alone. In this second case, however,
no portable and scalable programming systems exist.

Solution Strategy We describe our key goals for Papyrus: high performance, scalability, portability, inter-
operability with existing programming models, and application customizability. First, high performance
is a clear need in HPC. The design of Papyrus should provide the opportunity to exploit NVM resources
efficiently. Second, scalability is important in HPC as most of the applications must run on large sectors
of the systems - thousands to hundreds of thousands of processors. Papyrus should not inhibit scalability;
it should provide an interface that is able to scale as the application and system do. Third, portability is
a necessary requirement because HPC applications must be able to run on multiple, diverse platforms at
any given time. The upcoming DOE systems all have NVM integrated into the systems in different ways.
Papyrus must provide both functional portability and performance portability across systems with different
architectures. Fourth, interoperability is a practical requirement of HPC applications. Papyrus must be
designed so that it can be incrementally introduced into an application without conflicting with existing HPC
programming models and languages like MPI, UPC, OpenMP, OpenACC, C, C++, and Fortran. Furthermore,
Papyrus should leverage characteristics of these other programming models when possible. Interoperability
allows programmers to adopt Papyrus incrementally in legacy MPI applications avoiding major rewrites of
the application. Fifth, application customizability is a key requirement to achieve high performance and
scalability. HPC applications have many different usage scenarios, and thus Papyrus should have customizable
parameters for key features that impact other important properties like performance and scalability.

Exascale Computing Project (ECP) 92 ECP-RPT-ST-0001-2018

Recent Progress Meraculous [97] is a state-of-the-art de novo assembler written in UPC. Its parallel
algorithm for de Bruijn graph construction and traversal leverages the one-sided communication in UPC
to facilitate the requisite random access pattern in the global de Bruijn graph. The de Bruijn graph is
implemented as a distributed hash table with an overlapping substring of length k, referred to as a k-mer,
as key and a two-letter code [ACGT][ACGT] as value as shown in Figure 34. A hash function is used to
define the affinities between UPC threads and hash table entries. We ported the distributed hash table
written in UPC to a PapyrusKV database. The keys in the database are k-mers and the values are two-letter
codes. The PapyrusKV runtime calls the same hash function in the UPC application to determine the owners
of key-value pairs in the database by specifying the custom hash function when the database is created.
Thus, the thread-data affinities in UPC and PapyrusKV are the same as shown in Figure 34. PapyrusKV
requires fewer lines of source code than UPC because it calls standard put and get API functions without
implementing an application-specific algorithm for the distributed hash table construction and traversal.
Figure 35 shows the performance comparison between PapyrusKV and UPC of Meraculous on Cori. Both
versions are built and run using Berkeley UPC, an MPI-interoperable UPC implementation. We measured
the total execution time on 32, 64, 128, 256, and 512 UPC threads (32 UPC threads per node). UPC shows
better performance than PapyrusKV due to its RDMA capability and built-in remote atomic operations
during the graph traversal. The performance gap between UPC and PapyrusKV decreases as the number of
UPC threads increases. On 512 UPC threads, PapyrusKV runs 1.5 times slower than UPC. This is mainly
because of the asynchronous migration in PapyrusKV during the graph construction.

Keys	 Buckets	 Entries	
ACCGATTCA	

TTGCATTCT	

ACCCGATAG	

CTCGATTCA	

ACCAATTTG	

×	 TTGCATTCT	 AT…	

�	 ACCGATTCA	 CT…	

×	 CTCGATTCA	 CG…	

×	 ACCAATTTG	 TT…	

×	 ACCCGATAG	 AA…	

PapyrusKV	K-mer	Distributed	Hash	Table	in	UPC	

�	
�	

�

00	
01	
02	
×	03	
�	04	

*hash	

UPC	thread	

UPC	thread	

key	 value	

key	 value	

Thread-Data	Affinity	

UPC	shared	memory	

TTGCATTCT	 AT…	

ACCGATTCA	 CT…	
CTCGATTCA	 CG…	

ACCAATTTG	 TT…	
ACCCGATAG	 AA…	

Keys	 Values	

Figure 34: K-mer distributed hash table implementations in UPC and Pa-
pyrusKV.

1
2
4
8

16
32
64

128

PKV UPC PKV UPC PKV UPC PKV UPC PKV UPC
32 64 128 256 512Ex

ec
ut

io
n

Ti
m

e
(s

)

Numbers of UPC threads

Graph construction Graph traversal

Figure 35: Meraculous performance comparison between PapyrusKV (PKV)
and UPC on Cori.

Next Steps Our next efforts are:

1. Data compression: The overhead of data access and movement becomes a serious bottleneck compared
to compute overhead in large-scale HPC systems. We will integrate data compression techniques into
Papyrus to achieve storage reduction and performance improvement.

2. Data encryption: More sensitive data (e.g., health records, DNA data) is being used in distributed
infrastructures, and users need practical methods to secure their data throughout its lifecycle. We
will introduce data encryption in Papyrus to add an extra layer of security in the complex scientific
workflows.

Exascale Computing Project (ECP) 93 ECP-RPT-ST-0001-2018

4.2.12 PROTEAS — Clacc: OpenACC in Clang and LLVM

Overview Heterogeneous and manycore processors (e.g., multicore CPUs, GPUs, Xeon Phi, etc.) are
becoming the de facto architectures for current HPC platforms and future Exascale platforms. These
architectures are drastically diverse in terms of functionality, performance, programmability, and scalability,
significantly increasing the complexity that ECP application developers face as they attempt to fully utilize
the available hardware.

A key enabling technology being pursued as part of the PROTEAS project is OpenACC. While OpenMP
has historically focused on shared-memory multi-core programming, OpenACC was launched in 2010 as a
portable programming model for heterogeneous accelerators. Championed by institutions like NVIDIA, PGI,
and ORNL, OpenACC has evolved into one of the most portable and well recognized programming models
for accelerators today.

Despite the importance of OpenACC, the only non-academic open-source OpenACC compiler cited by
the OpenACC website is GCC [98]. However, GCC has lagged behind commercial compilers, such as PGI’s,
in providing production-quality support for the latest OpenACC specifications [99]. Moreover, GCC is known
within the compiler community to be challenging to extend and, especially within the DOE, is losing favor to
clang and LLVM for new compiler research and development efforts.

A major goal of PROTEAS is to build on clang and LLVM to develop an open-source, production-quality
OpenACC compiler ecosystem that is easily extensible and that utilizes the latest research in compiler
technology. Such an ecosystem is critical to the successful acceleration of ECP applications using modern
HPC hardware. We call this project clacc. The PROTEAS objectives for clacc are:

1. Develop production-quality, standard-conforming OpenACC compiler and runtime support as an
extension of clang/LLVM.

2. As part of the compiler design, leverage the clang ecosystem to enable the future construction of
source-level OpenACC tools, such as pretty printers, analyzers, lint tools, debugger extensions, and
editor extensions.

3. As the work matures, contribute OpenACC support to upstream clang/LLVM so that it can be used by
the broader HPC and parallel programming communities.

4. Throughout development, actively contribute upstream any clang/LLVM improvements that are
mutually beneficial to both our OpenACC work and to the broader clang/LLVM ecosystem.

Key Challenges

1. OpenACC Support: Developing production-quality, standards-conforming OpenACC compiler and
runtime support is a large undertaking. Complicating that undertaking further is the need for
optimization strategies that are competitive with existing commercial compilers, such as PGI’s, which
have been developed over many years since before the conception of the OpenACC standard.

2. Source-to-Source: Source-to-source translation from OpenACC to another programming language
can significantly reduce the effort to implement OpenACC. However, a well known issue with LLVM’s
compiler front end, clang, is that its AST, the source-level representation, was designed to be immutable.
Moreover, analysis and optimization capabilities are implemented at the level of the LLVM intermediate
representation (IR) not at the AST level, but such capabilities would be critical for lowering OpenACC’s
descriptive language to a more prescriptive language, like OpenMP.

3. Production-Quality: Clang and LLVM are sophisticated tools with a complex codebase and a large
team of developers who diligently screen contributions to maintain a clean design and correct operation.
As for any production-quality compiler, developing and contributing improvements to clang and LLVM
can be significantly more challenging and time-consuming than for research-quality compilers.

4. OpenMP Alternative: We believe that OpenACC’s current momentum as the go-to directive-
based language for accelerators will continue into the foreseeable future. Nevertheless, some potential
OpenACC adopters hesitate over concerns that OpenACC will one day be replaced by OpenMP features.

Exascale Computing Project (ECP) 94 ECP-RPT-ST-0001-2018

A tool to migrate OpenACC applications to OpenMP could alleviate such concerns, encourage adoption
of OpenACC, and thus advance utilization of acceleration hardware in ECP applications.

Solution Strategy

1. A key feature of the clacc design is to lower OpenACC to OpenMP. This design
has several benefits:

(a) By building on clang/LLVM’s existing OpenMP compiler and runtime
support, it reduces the effort necessary to construct a production-quality
OpenACC implementation.

(b) It facilitates repurposing for OpenACC existing OpenMP static analysis
and debugging tools.

(c) It facilitates porting applications from OpenACC to OpenMP to alleviate
the aforementioned concerns about developing applications in OpenACC.

2. To ensure clacc’s successful implementation and eventual acceptance upstream,
we have begun and will continue design discussions with the clang/LLVM
communities throughout clacc’s development.

3. To handle clang’s immutable AST, clacc’s design reuses a clang feature called
TreeTransform, which was originally designed for C++ template specializations.

OpenACC source

OpenACC AST

OpenMP AST

LLVM IR

TreeTransform

LLVM

OpenMP runtime

executable

codegen

clang parser

4. To take advantage of analyses and optimizations at the LLVM IR level, we are investigating ongoing
efforts to develop a parallel LLVM IR, which clacc could use as an alternative code generation target.

5. To stage our development effort, we are initially implementing clacc with two simplifications: we
are implementing a prescriptive interpretation of OpenACC to achieve correct behavior, and we are
implementing and testing only within C. We will extend this implementation with the necessary analyses
and optimizations for a descriptive interpretation and for C++ afterward.

6. Throughout clacc development, we are continuously integrating the latest upstream clang/LLVM
changes, and we are running and extending the clang/LLVM test suites to detect regressions and
incompatibilities. We are also investigating OpenACC benchmarks [100] and validation test suites [99]
to ensure correct OpenACC behavior and good performance.

Recent Progress

1. Prototyped the translation of an initial set of OpenACC directives and clauses to OpenMP.

2. Investigated OpenACC applications, benchmarks, and validation test suites for use in clacc testing.
Reached out to ECP application teams who have expressed interest in OpenACC.

3. Initiated clacc design discussions within the clang/LLVM developer community.

4. Contributed to upstream clang/LLVM a number of fixes and other improvements to clang attribute
and printing support, the clang/LLVM testing infrastructure, and the OpenMP implementation.

Next Steps

1. Complete clacc support for a prescriptive interpretation of OpenACC for correct behavior, and continue
to contribute mutually beneficial improvements to upstream clang/LLVM as we develop them.

2. Continue clacc design discussions with the clang/LLVM developer community.

3. Explore applications from ECP teams we have previously contacted.

Exascale Computing Project (ECP) 95 ECP-RPT-ST-0001-2018

4.3 MATHEMATICAL LIBRARIES

This section present projects in Mathematical Libraries.

Exascale Computing Project (ECP) 96 ECP-RPT-ST-0001-2018

4.3.1 xSDK4ECP

Overview The xSDK4ECP project is creating a value-added aggregation of DOE math and scientific
libraries through the xSDK (Extreme-scale Scientific Software Development Kit) [101], which increases the
combined usability, standardization, and interoperability of these libraries as needed by ECP. The project
focuses on community development and a commitment to combined success via quality improvement policies,
better build infrastructure, and the ability use diverse, independently developed xSDK libraries in combination
to solve large-scale multiphysics and multiscale problems. We are extending draft xSDK package community
policies and developing interoperability layers among numerical libraries in order to improve code quality,
access, usability, interoperability, and sustainability. Focus areas are (1) coordinated use of on-node resources,
(2) integrated execution (control inversion and adaptive execution strategies), and (3) coordinated and
sustainable documentation, testing, packaging, and deployment.

xSDK4ECP is needed for ECP because it enables ECP apps such as ExaAM and ExaWind to seamlessly
leverage the entire scientific libraries ecosystem. For example, ExaWind has extremely challenging linear
solver scaling problems. xSDK4ECP provides access to all scalable linear solvers with minimal changes.
xSDK4ECP is also an essential element of the product release process for ECP ST. xSDK4ECP provides
an aggregate build and install capability for all ECP math libraries that supports hierarchical, modular
installation of ECP software. Finally, xSDK4ECP provides a forum for collaborative math library development,
helping independent teams to accelerate adoption of best practices, enabling interoperability of independently
developed libraries and improving developer productivity and sustainability of the ECP ST software product.

Key Challenges The complexity of application codes is steadily increasing due to more sophisticated
scientific models. While some application areas will use Exascale platforms for higher fidelity, many are
using the extra computing capability for increased coupling of scales and physics. Without coordination, this
situation leads to difficulties when building application codes that use 8 or 10 different libraries, which in
turn might require additional libraries or even different versions of the same libraries.

The xSDK represents a different approach to coordinating library development and deployment. Prior to
the xSDK, scientific software packages were cohesive with a single team effort, but not across these efforts.
The xSDK goes a step further by developing community policies followed by each independent library included
in the xSDK. This policy-driven, coordinated approach enables independent development that still results in
compatible and composable capabilities.

Solution Strategy The xSDK effort has two primary thrusts:

1. Increased interoperability: xSDK packages can be built with a single Spack package target. Fur-
thermore, services from one package are accessible to another package.

2. Increased use of common best practices: The xSDK has a collection of community policies that
set expectations for a package, from best design practices to common look-and-feel.

xSDK interoperability efforts began first with eliminating incompatibilities that prohibited correct
compilation and integration of the independently developed libraries. These issues include being able to use a
common version of a library such as SuperLU by PETSc and Trilinos. The second, and ongoing phase is
increased use of one package’s capabilities from another. For example, users who build data objects using
PETSc can now access Trilinos solvers without copying to Trilinos data structures.

xSDK community package policies [102, 103] are a set of minimum requirements (including topics of
configuring, installing, testing, MPI usage, portability, contact and version information, open source licensing,
namespacing, and repository access) that a software package must satisfy in order to be considered xSDK
compatible. The designation of xSDK compatibility informs potential users that a package can be easily used
with others.

xSDK community installation policies [104] help make configuration and installation of xSDK software
and other HPC packages as efficient as possible on common platforms, including standard Linux distributions
and Mac OS X, as well as on target machines currently available at DOE computing facilities (ALCF, NERSC,
and OLCF) and eventually on new Exascale platforms.

Community policies for the xSDK promote long-term sustainability and interoperability among packages,
as a foundation for supporting complex multiphysics and multiscale ECP applications. In addition, because

Exascale Computing Project (ECP) 97 ECP-RPT-ST-0001-2018

new xSDK packages will follow the same standard, installation software and package managers (for example,
Spack [4]) can easily be extended to install many packages automatically.

Recent Progress Figure 36 illustrates a new Multiphysics Application C, built from two complementary
applications that can readily employ any libraries in the xSDK, shown in green. Current xSDK member
packages (version 0.3.0, released December 2017) are the four founding libraries (hypre [105], PETSc [106],
SuperLU [107], and Trilinos [108]) and three additional ECP math libraries added during this release
(MAGMA [109], MFEM [9], and SUNDIALS [110]). Application domain components are represented in
orange. Of particular note is Alquimia [111], a domain-specific interface that support uniform access to
multiple biogeochemistry capabilities, including PFLOTRAN [112]. Additional ECP math libraries are
working toward becoming xSDK member packages and plan to participate in future xSDK releases.

Figure 36: The December 2017 release of the xSDK contains many of the most
popular math and scientific libraries used in HPC. The above diagram shows the
interoperability of the libraries and a multiphysics or multiscale application.

The arrows among the xSDK libraries indicate current support for a package to call another to provide
scalable linear solvers functionality on its behalf. For example, Application A could use PETSc for an
implicit-explicit time advance, which in turn could interface to SuperLU to solve the resulting linear systems
with a sparse direct solver. Application B could use Trilinos to solve a nonlinear system, which in turn could
interface to hypre to solve the resulting linear systems with algebraic multigrid. Of course, many other
combinations of solver interoperability are also possible. The website https://xsdk.info/example-usage

and [113] provide examples of xSDK usage, including interoperability among linear solvers in hypre, PETSc,
SuperLU, and Trilinos.

Next Steps Our next efforts are:

1. Include more libraries: xSDK4ECP will continue efforts to expand the number of participating
packages, adapt community policies, and exploit increased interoperability. The next phase of xSDK
packages will include deal.II, a popular finite element library that has not been funded by DOE. We
anticipate some adaptation of language and policies that may be DOE centric.

2. Process control transfer interfaces: The ever-increasing use of concurrency within the top-level
MPI processes requires that computational resources used by an application or library can be transferred
to another library. Transfer of these resources is essential for obtaining good performance. The xSDK
project will develop interfaces to support sharing and transfer of computational resources.

Exascale Computing Project (ECP) 98 ECP-RPT-ST-0001-2018

https://xsdk.info/example-usage

4.3.2 hypre

Overview The hypre software library [8, 114] provides high performance preconditioners and solvers for
the solution of large sparse linear systems on massively parallel computers, with particular focus on algebraic
multigrid solvers. One of hypre’s unique features is the provision of a (semi)-structured interface, in addition
to a traditional linear-algebra based interface. The semi-structured interface is appropriate for applications
whose grids are mostly structured, but with some unstructured features. Examples include block-structured
grids, composite grids in structured adaptive mesh refinement (AMR) applications, and overset grids. These
interfaces give application users a more natural means for describing their linear systems, and provide access
to methods such as structured multigrid solvers, which can take advantage of the additional information
beyond just the matrix. Since current architecture trends are favoring regular compute patterns to achieve
high performance, the ability to express structure has become much more important. The hypre library
provides both unstructured and structured multigrid solvers, which have shown excellent scalability on a
variety of high performance computers, e.g Blue Gene systems (unstructured solver BoomerAMG has scaled
up to 1.25 million MPI cores with a total of 4.5 million hardware threads). It is used by many ECP application
teams, including ExaAM, Subsurface, ExaWind, CEED, and more. It requires a C compiler and an MPI
implementation, but it also runs in an OpenMP environment. It has some GPU capabilities.

Key Challenges While hypre’s solvers contain much parallelism, their main focus is the solution of
sparse linear systems, leading to very large demands on memory bandwidth. In addition, the use of
multiple levels, while greatly aiding convergence of the solvers, leads to decreasing systems sizes, number of
operations and parallel efficiencies on coarser levels. Particularly the unstructured algebraic multigrid solver
BoomerAMG[115], which is hypre’s most often used preconditioner, suffers from increasing communication
complexities on coarser levels. Coarse grid operators are generated by multiplying three matrices leading to
increasing numbers of nonzeroes per row in the resulting matrices and with it increasing numbers of neighbor
processes. While BoomerAMG’s solve phase mainly consists of matrix vector products and smoothing
operations, which are fairly straight forward to parallelize, even on a GPU, its setup phase is highly complex,
including many branches, a lot of integer operations as well as some sequential passages. Current interpolation
strategies that lead to best convergence and performance on distributed memory machines are not suitable for
implementation on GPUs or similar architectures requiring extreme parallelism. There are several algorithms
that are more suitable for GPUs, such as direct interpolation, which however leads to degraded convergence.
It could possibly be improved using Jacobi interpolation. All these options would need to be implemented
and tested on GPUs. Since hypre is a mature product with many solvers and interdependent features, any
significant changes that affect the whole library, are tedious and require much testing to ensure that the
library stays backward compatible and no features are broken.

Solution Strategy Since the upcoming computer architectures are heterogeneous with accelerators, it
was very important to enable hypre for GPUs. We looked into various options, such as the use of CUDA,
OpenMP 4.5, as well as RAJA and Kokkos. We limited the latter two options to the structured interface and
solvers which are more natural candidates for such an approach due to their use of macros, called BoxLoops,
for loops. Since computer architectures continue to change rapidly, it is important to come up with strategies
that will facilitate future porting of the software. Therefore we decided to develop a new memory model that
addresses the use of different memory locations.

Recent Progress Under internal LLNL funding we pursued the following ECP-related tasks: enabling
portions of several solvers for GPUs, and introducing a new memory model that is based on an abstract
machine model.

We implemented the new memory model. The new model modified hypre’s memory allocation and
copying routines to include memory allocations: HYPRE MEMORY HOST, HYPRE MEMORY DEVICE
and HYPRE MEMORY SHARED. It also includes a new routine SetExecutionMode that can be used to
define where the current code can be run. The new model can be mapped to the actual hardware in a variety
of ways through the configure process, e.g., a host-only machine (all allocations are just mallocs) or with or
without unified memory. Since it is based on an abstract machine model, it is expected that it will increase

Exascale Computing Project (ECP) 99 ECP-RPT-ST-0001-2018

Figure 37: Performance of PFMG-PCG on Ray at LLNL, using Power 8 CPUs
and Pascal GPUs

portability to future architectures. The implementation of the model was very intensive, since it affected the
whole library.

In addition, we implemented various GPU capabilities in hypre. For the structured solvers, SMG
and PFMG[116], both setup and solve phase can now completely be run on GPUs, using both CUDA or
OpenMP4.5, and do not require unified memory. In addition, options to use RAJA and Kokkos are available,
albeit not well tested yet. Figure 37 shows the performance of the total run times, including both setup and
solve phase, for our fastest performing multigrid solver PFMG-CG for a 7-point 3D Laplace problem using 32
million grid points per node, comparing performance on the CPU only utilizing all its cores, to running the
same problem on the GPUs using CUDA and OpenMP 4.5.

Porting the unstructured solver, BoomerAMG turned out to be far more complex. Currently only the
solve phase can be run on the GPU for select smoothers, mainly Jacobi smoothers, and requires unified
memory. The setup phase can currently be performed on the CPU only.

Next Steps Our most immediate plans are to improve the efficiency of interfacing applications with hypre’s
solvers. This includes removal of unnecessary copies, and increasing use of threading, wherever possible. We
plan to remove the requirement to use unified memory for BoomerAMG and want to increase the portions
of its solve phase that are not GPU-enabled yet, but are well suited for GPUs, e.g. polynomial smoothers.
Further out we would like to investigate how to enable the setup phase for GPUs, initially porting algorithms
that are suitable as well as finding ways to improve convergence where necessary. In addition, we would like
to work with ECP application teams who are using hypre or would like to use it, to achieve best performance
by tuning the solvers for them and potentially implementing suitable algorithmic changes. One example
would be the implementation of ICGS-GMRES to improve ExaWind’s solve times.

Other interesting topics that could impact ECP applications, but are currently pursued under SciDAC
funding is the development of parallel smoothers that lead to better convergence than Jacobi, such as ILU
related methods, as well as the development of multigrid solvers that are more capable to take advantage of
the structure of a problem.

Exascale Computing Project (ECP) 100 ECP-RPT-ST-0001-2018

4.3.3 The Flexible Computational Science Infrastructure (FleCSI) Project

Overview FleCSI[117] is a compile-time configurable framework designed to support multi-physics applica-
tion development. As such, FleCSI attempts to provide a very general set of infrastructure design patterns
that can be specialized and extended to suit the needs of a broad variety of solver and data requirements.
Current support includes multi-dimensional mesh topology, mesh geometry, and mesh adjacency information,
n-dimensional hashed-tree data structures, graph partitioning interfaces, and dependency closures, e.g., to
identify data dependencies between distributed-memory address spaces.

FleCSI also introduces a functional programming model with control, execution, and data abstractions
that are consistent with state-of-the-art task-based runtimes such as Legion[118] and Charm++[119, 120].
The FleCSI abstraction layer provides the developer with insulation from the underlying runtime, while
allowing support for multiple runtime systems, including conventional models like asynchronous MPI[121].
The intent is to give developers a concrete set of user-friendly programming tools that can be used now,
while allowing flexibility in choosing runtime implementations and optimizations that can be applied to
architectures and runtimes that arise in the future.

FleCSI uses static polymorphism, template meta-programming techniques, and other modern C++ features
to achieve high runtime performance, customizability, and to enable DSL-like features in our programming
model. The FleCSI program structure adopts a three-tiered approach: a low-level core library that is
specialized by a mid-level layer to create high-level application interfaces that hide the complexity of the
underlying templated classes. This structure facilitates separation of concerns, both between developer roles,
and between the structural components that make up a FleCSI-based application.

As an example of how this works in practice, consider the FleCSI mesh topology type:
The low-level mesh interface is parameterized by a policy, which defines various properties such as mesh

dimension, and concrete entity classes corresponding to each topological domain and dimension. The mesh
policy defines a series of tuples in order to declare its entity types for each topological dimension and domain,
and select connectivities between each entity. FleCSI supports a specialized type of localized connectivity
called a binding, which connects entities from one domain to another domain.

FleCSI separates mesh topology from geometry, and the mesh–from the topology’s perspective–is simply a
connected graph. Vertex coordinates and other application data are part of the state model. Our connectivity
computation algorithms are based on DOLFIN[122]. Once vertices and cells have been created, the remainder of
the connectivity data is computed automatically by the mesh topology through the following three algorithms:
build, transpose, and intersect, e.g., build is used to compute edges using cell-to-vertex connectivity and is also
responsible for creating entity objects associated with these edges. From a connectivity involving topological
dimensions D1 → D2, transpose creates connectivity D2 → D1. Intersect, given D1 → D′ and D′ → D2,
computes D1 → D2.

The low-level mesh topology provides a set of iterable objects that a mid-level specialization can make
available to an application to allow, at a high-level, iteration through connectivities using an intuitive
ranged-based for syntax, e.g., forall cells ci, forall edges ei of cell ci. Entities can be stored in sets that also
support range-based for iterations and enable set operations such as union, intersection, difference, and
provide functional model capabilities with filter, apply, map, reduce, etc.

Key Challenges As part of the LANL ATDM effort, FleCSI is one component in a rapidly shifting
environment of new software and simulation approaches. This poses several challenges. In particular, the fast
evolution of both the runtime backends used by FleCSI, and the applications that are built on top of it make
development of FleCSI itself a challenge. Because FleCSI is the fulcrum of a complicated co-design process, it
is exposed to instabilities and design challenges from above and below.

FleCSI also faces the challenge of developing a programming model that can span the diverse set of system
and node-level architectures for planned and current DOE procurements. Although there is a consistent
theme of increased parallelism and scale, the details of individual processor and accelerator architectures
present subtly different models of fine-grained parallelism that prove challenging to abstract.

Finally, FleCSI is also seeking to develop fundamental data structures and abstractions that will enable a
new and sustainable development process that also satisfies the scope of the LANL ATDM project. This
requires careful investigation of requirements and interface design that are essentially collaborative, and reach
across institutional and cultural barriers within our organization. These relationships are often challenging to

Exascale Computing Project (ECP) 101 ECP-RPT-ST-0001-2018

Wedge

Corner

Figure 38: FleCSI unstructured mesh example from the FleCSALE application.

negotiate, and require maturity and a broad knowledge base.

Solution Strategy Our general strategy is one of communication and co-design, whereby, we work in
carefully constructed, multi-disciplinary teams to identify gaps in the FleCSI model, design and implement
abstractions to fill these gaps, and then verify them in compact applications. To address the challenge of
operating in a fluid design environment, we often freeze several components of the application and/or backend
runtime to isolate a particular area for refactoring or enhancement. This approach requires a modular design,
which is one of the cornerstones of the FleCSI project, and one that has been successfully exercised in several
instances.

Recent Progress Recent progress on the FleCSI project has seen the addition of several new storage
classes for representing unstructured and sparse data. In particular, we have added sparse and ragged storage
classes. The sparse storage class provides an interface to logically sparse data, e.g., that might arise in the
representation of multi-material models or sparse matrices. The ragged storage type is similar, but does not
have the notion of columnar indices. Both of these storage types allow dynamic resizing and mutability of
the sparsity structure of the represented data. Additionally, we have added global and color storage classes
that allow the representation of simulation state that is either a singleton, or that is on a per-color (the task
version of an MPI rank) basis, respectively.

Other recent enhancements include a simplified and improved interoperability interface for managing and
interacting with MPI tasks, an improved futures interface, and C++ language extensions for fine-grained
data parallel operations.

Next Steps Future work will include the design and implementation of a set topology data structure that is
suitable for representing several different classes of particles, e.g., particle-in-cell (PIC) method, material-point
method (MPM), and Monte Carlo (MC) methods. We are also working to incorporate changes to the Legion
programming model that will provide: a more formal interface for reasoning about and managing graph
coloring dependent partitioning, and an improved task model that will significantly increase scalability control
replication. Control replication is an important design improvement to Legion, as it will allow runtime
management of dynamically changing data types in a more efficient manner than is currently possible. We
will continue to engage in co-design with runtime and application developers to refine and improve the FleCSI
model and interface.

Exascale Computing Project (ECP) 102 ECP-RPT-ST-0001-2018

4.3.4 LLNL ATDM Math Libraries

Overview The LLNL ATDM Mathematical Libraries project performs work in the MFEM library [123]
that is focused on providing high-performance mathematical algorithms and finite element discretizations
to next-gen high-order ECP/ATDM applications. A main component of these efforts is the development of
ATDM-specific physics enhancements in the finite element algorithms in MFEM and the MFEM-based BLAST
Arbitrary Lagrangian-Eulerian (ALE) code [124], in order to provide efficient discretization components for
LLNL’s ATDM efforts, including the MARBL application (ECP’s LLNLApp).

A second main task in the project is the development of unique unstructured adaptive mesh refinement
(AMR) algorithms in MFEM, that focus on generality, parallel scalability, and ease of integration in
unstructured mesh applications. The new AMR capabilities can benefit a variety of ECP apps that use
unstructured meshes, as well as many other applications in industry and the SciDAC program.

Another aspect of the work is the preparation of the MFEM finite element library and related codes for
exascale platforms by using mathematical algorithms and software implementations that exploit increasing
on-node concurrency targeting multiple complex architectures (e.g. GPUs). This part of the project is
synergistic with and leverages efforts from the ECP CEED co-design center.

MFEM is an open-source finite element library with 3000 downloads/year from 70+ countries. It is freely
available at mfem.org, on GitHub at github.com/mfem, where the MFEM community includes more than
165 members), as well as via Spack and OpenHPC. The application outreach and the integration in the ECP
ecosystem is further facilitated by MFEM’s participation in ECP’s xSDK project.

Key Challenges The key challenges addressed by the LLNL ATDM Mathematical Libraries project are:
Robust high-order finite element methods for ALE compressible flow. While high-order methods
offer significant advantages in terms of HPC performance, their application to complicated ALE problems
requires careful considerations to control oscillations and ensure accuracy.

Figure 39: AMR implementation in MFEM allows many applications to benefit
from non-conforming adaptivity, without significant changes in their codes.

Scalable algorithms for unstructured adaptive mesh refinement. Adaptive mesh refinement is a
common way to increasing application efficiency in problems with localized features. While block-structured
AMR has been well-studied, applying AMR in unstructured settings is challenging, especially in terms of
derefinement, anisotropic refinement, parallel rebalance and scalability.
GPU porting of finite element codes. Due to the relatively high complexity of the finite element
machinery, MFEM, BLAST and related codes use object-oriented C++ design that allows generality and

Exascale Computing Project (ECP) 103 ECP-RPT-ST-0001-2018

mfem.org
github.com/mfem

flexibility, but poses challenges in terms of porting to GPU architectures. Finding the right balance between
generality and performance in the GPU context is an important challenge for many finite element-based
codes that remains outstanding in the current software and programming model environment.

Solution Strategy The MFEM team has performed and documented a lot of research in high-performance
mathematical algorithms and finite element discretizations of interest to ATDM applications [125, 126,
127, 128, 129, 130, 131, 132]. Our work has demonstrated that the high-order finite element approach can
successfully handle coupled multi-material ALE, radiation-diffusion and MHD. We have also shown how
high-order methods can be adapted for monotonicity (positivity preservation), handling of artificial viscosity
(shock capturing), sub-zonal physics via closure models, etc.

To enable many applications to take advantage of unstructured mesh adaptivity, the MFEM team is
developing AMR algorithms at library level, targeting both conforming local refinement on simplex meshes
and non-conforming refinement for quad/hex meshes. Our approach is fairly general, allowing for any
high-order finite element space, H1, H(curl), H(div), on any high-order curved mesh in 2D and 3D, arbitrary
order hanging nodes, anisotropic refinement, derifenement and parallel load balancing. An important feature
of our library approach is that it is independent of the physics, and thus easy to incorporate in apps, see
Figure 39.

As part of the efforts in the ECP co-design Center for Efficient Exascale Discretizations (CEED), the
MFEM team is also developing mathematical algorithms and software implementations for finite element
methods that exploit increasingq on-node concurrency targeting multiple complex architectures (e.g. GPUs).
This work includes the libCEED low-level API library, the Laghos miniapp, and several other efforts available
through CEED.

To reach its many customers and partners in NNSA, DOE Office of Science, academia and industry, the
MFEM team delivers regular releases on GitHub (e.g. mfem-3.3 and mfem-3.3.2 in 2017) that include detailed
documentation and many example codes. Code quality is ensured by smoke tests with Travis CI on Linux,
Mac, Windows and nightly regression testing at LLNL.

Recent Progress Selected recent highlights:

• New optimized version of parallel AMR in MFEM, including construction of parallel interpolation,
parallel refinement and rebalancing, demonstrated excellent weak and strong scalability during runs on
the full Vulcan BG/Q machine at LLNL (400K MPI tasks).

• An interface for the new TMOP mesh optimization capabilities from mfem-3.3.2 was completed in the
BLAST code, so that its remesh phase can use the TMOP functionality.

• Completed initial version of multi-group radiation-diffusion in BLAST.

• Participated in the ATDM L2 milestone for MARBL, “Demonstration of Modular Transport Capability
in a Multi-Physics Code”, which included MFEM support for high-order (HO) to low-order-refined
(LOR) field transfer.

• BLAST’s closure model was improved by separating the material energies into finite element and
point-based parts, avoiding L2 projections of highly oscillatory modes.

• MFEM v3.3.2 was released with many new features including: support for high-order mesh optimization,
xSDK support, integration with STRUMPACK, 5 new examples and miniapps, physical-to-reference
space mapping, continuous integration testing on Linux, Mac and Windows, and more.

• MFEM v3.3 was released with many new features including: support for PETSc, SUNDIALS, CMake,
matrix-free preconditioning, parallel mesh format, 36 new integrators, 16 new examples, and more.

• Moved main MFEM development to GitHub, including many internal branches and pull requests.

Next Steps Our next steps include: prepare and release mfem-3.4; continue to attend and contribute to
the weekly MARBL and BLAST meetings; complete an initial draft of MFEM’s unified interface extensions
to support GPUs and other accelerators; and provide support for the upcoming MARBL L2 milestones.

Exascale Computing Project (ECP) 104 ECP-RPT-ST-0001-2018

4.3.5 ATDM SNL Math Libraries

Overview The major project outcome for the SNL ATM Math Libraries project is to provide re-usable
and convenient, math-related tools for component-based software engineering of Exascale apps.

This project develops and integrates scalable, modular, and cross-cutting software infrastructure compo-
nents for ATDM and other future Exascale applications that utilize, where appropriate, ATDM Core CS
components: Kokkos performance portability, Sacado/ROL embedded sensitivity analysis and optimization
technology, DARMA asynchronous many-tasking, and DataWarehouse. These components include:

1. KokkosKernels (KK): performance-portable sparse/dense linear algebra and graph kernels that utilize
the hierarchical memory subsystem expected in future architectures;

2. Scalable Solvers (SS): optimal linear solver algorithms that exploit fine-grain parallelism for vector/SIMT
and thread scaling and leverage next-generation execution and communication capabilities;

3. Agile Components (AC): tools for interface abstractions, discretization, time integration, and solution
of nonlinear PDEs; and

4. Embedded Analysis (EA): tools for enabling advanced analysis workflows, focusing on embedded
sensitivity analysis and optimization with use of derivatives for uncertainty quantification.

This project combines algorithmic R&D with delivery of interoperable software components that are
expected to be crucial capabilities that will enable Sandia’s ATDM application codes to be performance
portable across next-generation computing architectures such as GPUs and Xeon Phis. This work will include
integration of these components into the application codes and improving their design and interfaces for
mission relevant use cases.

Key Challenges There are several challenges associated with the work this project is conducting. Part
of the complexity arises because profiling tools are not yet full mature for advanced architectures and in
this context profiling involves the interplay of several factors which require expert judgment to improve
performance. Another challenging aspect is working on milestones that span a variety of projects and code
bases. There is a strong dependence on the various application code development teams for our own team’s
success. In addition, we face a constant tension between the need for production ready tools and components
in a realm where the state-of-the-art is still evolving.

Solution Strategy To address the challenges above, the SNL ATM Math Libraries project is taking a
staged approach to profiling in regards to target architectures and the algorithms involved. We are also
coordinating on a regular basis with the other projects that are involved in our work to minimize impediments.
In response to the need for production ready tools, we are focusing on a hierarchical approach that involves
producing robust, hardened code for core algorithms while simultaneous pursuing research ideas where
appropriate.

Recent Progress In this section we provide several high-level snapshots of recent progress in the Math
Libraries project

• The EA team has completed the integration of sensitivity analysis and ROL optimization tools with
Tempus in support of transient full-space optimization.

• The KK team completed development of a prototype for unified SIMD types as Kokkos SIMD type

• The KK team built batched BLAS kernels based on the Kokkos SIMD type to be run on GPUs. On a
P100 GPU, the Kokkoskernels triangular solve and dense matrix-matrix multiply provide up to 2x and
170x speedup, respectively, compared to NVIDIA?s cuBLAS.

• Profiling of the miniEM application in Panzer by the SS team, using a mesh provided by EMPIRE
developers, has identified memory growth in problems during setup which has led to a reduced memory
footprint.

Exascale Computing Project (ECP) 105 ECP-RPT-ST-0001-2018

• Initial results, gathered by the SS team, for performance of Tpetra stack (Belos,MueLu,Ifpack2) have
been gathered for the solve phase on GPUs. This resulted in the identification of performance bottlenecks
that either are in the process of or have been resolved.

• The AC team completed construction and testing of the operator-split stepper in Tempus. This is
required for time integrating the PIC and E-field solves.

• The AC team implemented and verified a variable time-stepping algorithm (Denner, 2014) within
Tempus for use with the BDF2 time-integration scheme and other Tempus schemes.

Next Steps The following list details the next steps being taking by each component of the ATDM SNL
Math Libraries project:

• The SS team is investigating, in collaboration with the University of Wyoming, the use of Multilevel
solvers, which will eventually get integrated into SPARC via MueLu.

• The KK team will continue to work on Integration of Kokkoskernels into IFPACK2 line preconditioners
as well as testing on Volta GPUs.

• The AC team will be focusing on the integration of Tempus into EMPIRE-PIC.

• The EA team will extend the work that was done for adjoint sensitivities to transient, full-space
optimization.

Exascale Computing Project (ECP) 106 ECP-RPT-ST-0001-2018

4.3.6 Enabling Time Integrators for Exascale Through SUNDIALS

Overview This project is enhancing the SUNDIALS library of numerical software packages for integrating
differential systems in time using state-of-the-art adaptive time step technologies for use on exascale systems.
Through software infrastructure developments, this project is enabling the efficient and robust SUNDIALS
time integrator packages to easily interoperate with external linear and nonlinear solver packages developed
for exascale computing. In addition, this project is providing a many-vector capability so that SUNDIALS
time integrators can more easily operate on data divided over heterogeneous architectures. Lastly, this project
is supporting the deployment and use of SUNDIALS packages within ECP applications, mainly through
incorporation into the discretization-based Co-Design Centers, AMReX and CEED.

Efficient time integrators are essential for ECP because they are at the core of every time-dependent
simulation application. However, many applications do not use state-of-the-art methods, and if they do, they
often do not yet use them fully on their systems. For example, at the start of the ECP the astrophysics code,
Nyx, used an adaptive integration package for solving individual reactions. However, by applying a time
integration package to a larger reaction system, the code is able to vectorize more of the calculations and
get an accurate solution much faster. By allowing for solvers tuned to exascale systems and vectors that
are heterogeneous, SUNDIALS will be more applicable for use in multiphysics systems running on exascale
platforms.

Key Challenges Current implementations of efficient time integrators face challenges on many fronts.
First, integrators typically have treated the full physical problem with a single step size or have relied on
low order operator splitting methods to couple physical processes at different time scales. While research
is moving forward within the time integration community on methods for multirate systems, the software
infrastructure needs to be in place to accommodate these schemes once they are developed. Second, typical
integrators operate on problem data in the form of vectors. These operations suffer from low arithmetic
intensity, and their efficiency is often memory bandwidth limited. Lastly, implicit integrators, which are
required in many exascale systems, require efficient linear and nonlinear solvers to be highly effective. In
addition, by applying integrator-dependent controls on these solvers, their efficiency can be significantly
increased. Applying these controls, however, often requires that information about the integrator and its
progress be passed to the solver, and software must be designed to effectively pass that information while
ensuring adequate encapsulation to provide ease of maintenance and software extension.

Solution Strategy This project includes a number of implementation activities that will prepare the
SUNDIALS suite of time integrators for exascale systems. The main activity is a redesign of all linear solver
interfaces and encapsulation of the nonlinear solvers within the time integrators in SUNDIALS. The new
linear solver interfaces will make it much easier to interface external solver packages while maintaining the
efficiency of SUNDIALS integrators. Encapsulating the nonlinear solvers, will reduce redundant code and
allow the time integrators to better leverage common code thus lowering the code maintenance burden with
SUNDIALS. In addition, the integrators will be able to take advantage of outside nonlinear solvers.

This project is also introducing a set of optional fused vector kernels into SUNDIALS. The goal of these
kernels is to execute multiple vector operations at once thereby reducing the number of kernel launches in
GPU environments and also reducing the number of communications required for reduction operations. These
new kernels will be added to all supplied SUNDIALS vectors and will be invoked through optional interfaces.

Lastly, this project is developing a many-vector capability for SUNDIALS. Due to the tight data
encapsulation within SUNDIALS, users are able to supply any vector they would like underneath the
integrators. This project will supply the infrastructure needed to make it easy to place a vector of vectors
underneath the integrators. This vector of vectors is essential for later implementation of time integrators
that will advance various parts of the system with different time step sizes. This many-vector capability will
also ease the use of different programming environments as differing vectors can be instantiated on different
parts of a hybrid machine.

Recent Progress In September of 2017, SUNDIALS 3.0.0 including new linear solver and matrix interfaces,
was released [133]. Figure 40 shows the new organization of SUNDIALS where separate linear solver interfaces
are provided for direct and iterative linear solver methods. These interfaces are shared across all SUNDIALS

Exascale Computing Project (ECP) 107 ECP-RPT-ST-0001-2018

integrators. Individual integrators have the freedom to supply specific information from the integrator that
controls the linear solver. In addition, a single interface to each external solver, such as SuperLU MT or
KLU, is shared across the suite, as opposed to the prior situation where each integrator included its own
interface to each solver. In addition, a SUNMATRIX class was developed that can be instantiated with a
dense, banded, or sparse matrix. Again, this class is shared by all integrators.

SUNDIALS

CVODE CVODES ARKODE IDAS KINSOLIDA

VECTOR MODULES

SERIAL PARALLEL
(MPI)

PTHREADSOPENMP

CUDA RAJA

PARHYP
(HYPRE) PETSC

NVECTOR API SUNMATRIX API

MATRIX MODULES

DENSE

BAND

SPARSE

Cut Here

SUNLINEARSOLVER API

LINEAR SOLVER MODULES

DIRECT

DENSE

SUPERLU_MT

BAND

KLU

LAPACK
DENSE

LAPACK
BAND

ITERATIVE

SPTFQMR

SPBCG

SPFGMR

PCG

SPGMR

Figure 40: New structure of SUNDIALS showing options for the new SUNLIN-
EARSOLVER and SUNMATRIX classes.

Next Steps During the remainder of FY18, this project team will:

1. Complete a release of SUNDIALS with the new fused vector routines implemented within each supplied
vector and optionally used from the integrator packages.

2. Complete a release of SUNDIALS with all nonlinear solvers encapsulated and with implementations of
the new nonlinear solver interfaces for both the Newton and fixed point solvers used in the integrator
packages.

Exascale Computing Project (ECP) 108 ECP-RPT-ST-0001-2018

4.3.7 PETSc-TAO

Overview Algebraic solvers (generally nonlinear solvers that use sparse linear solvers via Newton’s method)
and ODE/DAE integrators form the core computation of many numerical simulations. No scalable “black box”
sparse solvers or integrators work for all applications, nor single implementations that work well for all scales
of problem size. Hence, algebraic solver packages provide a wide variety of algorithms and implementations
that can be customized for the application and range of problem sizes at hand. PETSc [106, 134] is a widely
used software library for the scalable solution of linear, nonlinear, and ODE/DAE systems and computation of
adjoints (sometimes called sensitivities) of ODE systems. We focus on three topics: (1) partially matrix-free
scalable solvers efficiently use many-core and GPU-based systems; (2) reduced synchronization algorithms
that can scale to larger concurrency than solvers with synchronization points; and (3) performance and data
structure optimizations for all the core data structures to better utilize many-core and GPU-based systems
as well as provide scalability to the Exascale.

The availability of systems with over 100 times the processing power of today’s machines compels the
utilization of these systems not just for a single “forward solve” simulation (as discussed above) but rather
within a tight loop of optimization, sensitivity analysis (SA), and uncertain quantification (UQ). This requires
the implementation of a new, scalable library for managing a dynamic hierarchical collection of running
scalable simulations, where the simulations directly feed results into the optimization, SA, and UQ solvers.
This library, which we call libEnsemble, directs the multiple concurrent “function evaluations” through
the tight coupling and feedback described above. This work consist of two parts: (1) the development of
libEnsemble and (2) the extension of TAO [135] (our PETSc-based scalable optimization library) with new
algorithms and software to utilize libEnsemble.

Key Challenges A key challenge for for scaling the PETSc/TAO numerical libraries to Exascale systems
is that traditional “sparse-matrix-based” techniques for linear, nonlinear, and ODE solvers, as well as
optimization algorithms, are memory-bandwidth limited. Another difficulty is that any synchronizations
required across all compute units–for example, an inner product or a norm–can dramatically affect the scaling
of the solvers.

Running an ensemble of simulation requires a coordination layer that handles load balancing and allows
the collection of running simulations to grow and shrink based on feedback. Thus, this library must be able to
dynamically start simulations with different parameters, resume simulations to obtain more accurate results,
prune running simulations that the solvers determine can no longer provide useful information, monitor
the progress of the simulations, and stop failed or hung simulations, and collect data from the individual
simulations both while they are running and at the end.

Solution Strategy To address the scalability of the numerical libraries, we are developing new solvers and
data structures including pipeline Krylov methods that delay the use of the results of inner products and
norms, allowing overlapping of the reductions and other computation; partially matrix-free solvers using
high-order methods that have high floating-point-to-memory-access ratios and good potential to use many-core
and GPU-based systems; and in-node optimizations of sparse matrix-matrix products needed by algebraic
multigrid to better utilize many-core systems using a thread neutral “bypass MPI” approach, which implements
default interprocessor communication using MPI but bypasses the use of MPI in performance-critical regions
for higher performance and thereby maintains MPI portability.

Our strategy for coordinating ensemble computations has been to develop libEnsemble to satisfy our
needs. This library should not be confused with workflow-based scripting systems; rather it is a library
that, through the tight coupling and feedback described above, directs the multiple concurrent “function
evaluations” needed by optimization, SA, and UQ solvers.

Recent Progress In the past year, we have released PETSc 3.9 (available at http://www.mcs.anl.gov/
petsc) that features pipeline Krylov implementations and improved performance on SIMD architectures.
Performance at scale on Theta at Argonne for a 2-D reaction diffusion example on a 16384x16384 mesh using
a multigrid preconditioner with 6 levels is shown in Figure 41. The SIMD optimization delivers 2x faster
matrix multiply, while not obviously slowing down other kernels. The effect of better vectorization is minimal
when available memory bandwidth is low.

Exascale Computing Project (ECP) 109 ECP-RPT-ST-0001-2018

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

64 128 256 512
of KNL Nodes

0

500

1000

1500

2000

2500

W
al

l t
im

e
(s

ec
)

CSR (non-hatched bars) vs SELL (hatched bars)
flat mode using DRAM only
cache mode
flat mode
MatMult kernel

Figure 41: Performance at scale on Theta at Argonne for a 2-D reaction diffusion
example on a 16384x16384 mesh using a multigrid preconditioner with 6 levels.

We have also developed the libEnsemble API, implemented it in Python, released version 0.1.0 (available
at https://github.com/Libensemble/libensemble), and provided a Spack installation. The code has been
testing using the POUNDERS numerical optimization solver.

Next Steps Our next efforts are:

1. Release libEnsemble with monitoring and pools: Incorporate improved scheduling and basic
online monitoring into libEnsemble with a dynamic pool of simulations. This will be the first supported
release.

2. Release PETSc with enhanced GPU support: Release of PETSc with enhanced GPU support
specifically developed and optimized anticipated architectures.

Exascale Computing Project (ECP) 110 ECP-RPT-ST-0001-2018

https://github.com/Libensemble/libensemble

4.3.8 Factorization Based Sparse Solvers and Preconditioners for Exascale

Overview In this project we will deliver factorization based sparse solvers encompassing the two widely used
algorithm variants: supernodal (SuperLU library) and multifrontal (STRUMPACK library). STRUMPACK
is further enhanced with scalable preconditioning functionality using hierarchical matrix algebra. Both
libraries are purely algebraic, applicable to a large variety of application domains. We will address several
challenges that arise in Exascale computing, with the following focus areas: (1) Develop novel approximation
algorithms that have lower arithmetic and communication complexity with respect to the input problem
size; (2) Develop new parallelization strategies that reduce inter-process communication and expose task
parallelism and vectorization for irregular computations involving sparse data structures to better use on-node
resources; (3) Integrate our software into the higher level algebraic solvers such as hypre, PETSc, Trilinos,
and collaborate with ECP application teams for application-specific and hardware-specific tuning of the
parameters space to achieve optimal efficiency of our solvers.

Our solver technology is essential for ECP, because many DOE simulation and data analysis codes expected
to run on the Exascale machines need solutions of sparse algebraic systems, and many high fidelity simulations
involve large-scale multiphysics and multiscale modeling problems that generate highly ill-conditioned and
indefinite algebraic equations, for which pure iterative methods such as Krylov and multigrid, albeit readily
parallelizable on large machines, cannot converge to the solution. The factorization based algorithms being
developed in our ECP project represent an important class of methods that are indispensable building blocks
for solving those numerically challenging problems. Our software can often be used as a reliable standalone
solver, or as a preconditioner for Krylov iterative methods, or as a coarse grid solver in multigrid methods,
just to name a few.

Key Challenges At Exascale we need to address several major challenges: decreasing amount of memory
per core, larger impact of communication cost and load imbalance, more heterogeneous memory organization.
Our new design of algorithms and codes need to focus on reducing communication and synchronization and
task scheduling instead of floating point operation throughput. In sparse factorization methods, we expect
new bottlenecks in parts of the code that previously received little attention. For example, the preprocessing
step involves numerical pivoting for selecting stable pivots and symbolic factorization, which do not yet
parallelize well on manycore architectures with fine-grained parallelism. At Exascale, direct solvers are more
likely to be used in a preconditioning strategy, for example, in block Jacobi preconditioning, in domain
decomposition methods or as coarse-grid solvers in algebraic multigrid, which requires repeated triangular
solves. The challenge here is to mitigate the low arithmetic intensity and high degree of data dependency.

Compared to iterative methods, the primary bottleneck of direct solvers is the asymptotically higher
growth in memory need and floating point operations, especially for problems from three-dimensional geometry.
It is imperative to develop novel factorization methods which require much less memory footprint and data
movement.

Solution Strategy We will address these challenges in several thrust areas. The new techniques will be
implemented in the two software packages SuperLU and STRUMPACK. The former is a widely used sparse
direct solver based on supernodal factorization and the latter is a newer direct solver/preconditioner package
based on multifrontal factorization and hierarchical low-rank matrix structures.

The improvements for SuperLU will be mainly in two areas: (1) develop a communication-avoiding 3D
factorization code that have provably lower communication complexity; (2) develop a synchronization-avoiding
triangular solve code to enable more overlap of communications of different processes at different substitution
steps.

In addition to exploiting structural sparsity as SuperLU does, STRUMPACK also exploits data sparseness
in the dense blocks of sparse factors using low-rank representations, which leads to linear scaling O(n)
or O(n log n) memory and arithmetic complexity for PDEs with smooth kernels. The developments for
STRUMPACK will focus several areas: (1) develop robust stopping criteria — both absolute and relative —
for adaptive (incremental) randomized sampling scheme to reveal numerical ranks in the low-rank compression
routine. The goal is to use enough samples for stability, but not too many for efficiency; (2) add OpenMP
support for both HSS compression and ULV factorization routines, especially use OpenMP task construct
to support irregular parallelism. (3) reduce MPI communication in all stages of the code, including HSS

Exascale Computing Project (ECP) 111 ECP-RPT-ST-0001-2018

construction, ULV factorization and triangular solve; (4) in addition to HSS, develop codes to support other
simpler low-rank format, such as HOLDR. The HSS format has asymptotically lower complexity than HOLDR,
but has larger prefactor constant. We expect HSS to be more useful for large-scale problems while HOLDR
is more useful for mid-range problems; (5) work with the ECP application teams to examine their specific
problem characteristics and develop the best clustering/ordering methods to reveal low-rank structures.

Recent Progress We have made significant progress in the following areas:

1. We developed and evaluated a fully algebraic sparse preconditioner in STRUMPACK. On top of the
baseline multifrontal direct solver, we use low-rank compression in dense frontal matrices to obtain
approximate factorization. We showed that our MF+HSS preconditioner is more robust for numerically
hard problems than many alternatives. Our code strong scales to over 6000 cores [136] (Fig. 42).

2. We developed several strategies to enhance scalability of triangular solve in SuperLU DIST. One is an
asynchronous tree-based broadcast/reduction scheme which reduces latency and improves communication
load balance. Another is efficient threading implementation and BLAS operations. The new code is
4.4x and 6.1x faster on 4096 cores with one and 50 right-hand sides, respectively [137] (Fig. 43).

3. We developed a new communication-avoiding 3D sparse LU factorization (IPDPS) algorithm that has
provably asymptotic lower communication complexity in both latency and volume. The prototype
implementation in SuperLU DIST achieves up to 27x improvement over the baseline 2D algorithm
when run on 24,000 cores of Edison at NERSC [138].

4. In collaboration with ExaGraph ECP project, we evaluated the performance of a parallel pre-ordering
algorithm called Approximate-Weight Perfect Matching (AWPM) for pivot selection in SuperLU DIST.
For most practical problems (e.g.,DOE apps, and SuiteSparse) the weights of the perfect matchings
generated by AWPM often within 99% of the optimum. The MPI+OpenMP implementation on Cori
at NERSC scales up to 256 nodes —- 2500x faster than serial MC64, and up to 114x speedup on
256 nodes (17,408 cores) Cori-KNL [139]. The interface to AWPM are already implemented in both
STRUMPACK and SuperLU and are released.

Figure 42: STRUMPACK scaling of three phases.

16 64 256 1024 2025 4096

processor count

10
-2

10
-1

S
o

lv
e

ti
m

e

Li4244 (binary)
atmosmodj (binary)
Ga19As19H42 (binary)
Geo_1438 (binary)

Li4244 (flat)
atmosmodj (flat)
Ga19As19H42 (flat)
Geo_1438 (flat)

Strong scaling

4.4x

Figure 43: SuperLU triangular solve scaling with 4 matrices.

Next Steps Our future efforts will focus on the following areas:

• For STRUMPACK, we will improve the performance of the HSS solve routine, add OpenMP and reduce
communication. We will implement the HOLDR low-rank format.

• For both STRUMPACK and SuperLU, we will build detailed performance models and performance
specific code optimizations for the ECP applications that use our solvers.

Exascale Computing Project (ECP) 112 ECP-RPT-ST-0001-2018

4.3.9 ForTrilinos

Overview The Exascale Computing Project (ECP) requires the successful transformation and porting
of many Fortran application codes in preparation for ECP platforms. A significant number of these codes
rely upon the scalable solution of linear and nonlinear equations. The Trilinos Project contains a large and
growing collection of solver capabilities that can utilize next-generation platforms, in particular scalable
multicore, manycore, accelerator and heterogeneous systems. Trilinos is primarily written in C++, including
its user interfaces. While C++ is advantageous for gaining access to the latest programming environments,
it limits Trilinos usage via Fortran. Several ad hoc translation interfaces exist to enable Fortran usage of
Trilinos, but none of these interfaces is general-purpose or written for reusable and sustainable external use.

ForTrilinos provides a seamless pathway for large and complex Fortran-based codes to access Trilinos
without C/C++ interface code. This access includes Fortran versions of Kokkos abstractions for code
execution and data management. The project uses an interface generator, SWIG, which the project is
extending, to create the object-oriented Fotran wrapper code that users can access directly. This language
translation will occur in both directions; ForTrilinos will provide an inversion of control functionality that
enables custom extensions of the Trilinos solvers that are Fortran-based. Once the ForTrilinos project is
complete, a functional, extensible suite of capabilities to access Trilinos on next-generation computing systems
will be provided. Several examples of this technology will be demonstrated within ECP codes with the aim
of meeting their simulation goals and illustrate the technology to other Fortran-based ECP codes. As a
second benefit to ECP from this effort, the Fortrilinos approach of using SWIG to generate interfaces could
be extended to other C/C++ based tools and software within the ECP stable.

Key Challenges Developing the interfaces to the C++ libraries that provide access to cutting-edge
research, such as Trilinos, is of significant benefit to Fortran community. However, such interfaces must
be well documented, sustainable and extensible, which would require significant amount of resources and
investment. This is further complicated by the requirements to support heterogeneous platforms (e.g.,
GPUs) and inversion-of-control functionality. The manual approach to such interfaces has been shown to be
unsustainable as it requires interface developers to have in-depth expertise in multiple languages and the
peculiarities in their interaction on top of the time commitment to update the interfaces with changes in the
library.

ForTrilinos addresses both the issue of reducing interface generation cost through investment in tool
configuration and usage to make the process as automatic as possible, and the issue of providing the full-
featured interface to Trilinos library, including access to manycore, accelerator and heterogeneous solver
capabilities in Trilinos.

Solution Strategy The ForTrilinos project has two primary thrusts:

1. SWIG development to support Fortran wrapping: The new Fortran module for SWIG allows
for automatic generation of interfaces.

2. Incremental wrapping of selected Trilinos functionality: ForTrilinos provides robust interfaces
to selected Trilinos capabilities, including distributed data objects, linear and nonlinear solvers.

ForTrilinos started with developing a Fortran module for the Simplified Wrapper Interface Generator
(SWIG) utility [140]. SWIG is used to parse C++ code and generate wrapper code, and was already used for
this purpose for several dozen target languages, most notably Python. The project took the approach of
adding a Fortran 2003 wrapper generator for SWIG in order to fulfill many of the critical feature requirements
for ForTrilinos.

The developed SWIG/Fortran functionality allowed to proceed with automatic generation of Fortran
interfaces to selected Trilinos libraries. The work is conducted in phases, with each phase increasing the
number of wrapped of Trilinos packages.

The first phase, completed in the first year, developed interfaces for a critical set of features required
for solving linear and eigen-problems. The second phase addresses nonlinear solver, including developing
automatic approach for inversion-of-control capability. Finally, in the third phase, the challenge of interoper-
able heterogeneous data passing between Fortran and C++, including GPU data, is addressed, including
performance testing.

Exascale Computing Project (ECP) 113 ECP-RPT-ST-0001-2018

Recent Progress Figure 44 illustrates a new Inversion-of-Control (IoC) implementation in ForTrilinos.
The new approach allows Fortran users to define an operator by using a derived type on the Fortran side,
and use Trilinos algorithms, e.g. Krylov solvers, to solve the linear system with that operator.

Tr
ili
n
o
s

U
se
r

S
W
IG
-g
e
n
e
ra
te
d

Fortran

C++

Tpetra::Operator<SC,LO,GO,NO>

ForTpetraOperator

ForTpetraOperatorHandle

ForTpetraOperator

MyFortranOperator

void* pointer to
pointer to

C_PTR to

Figure 44: The proposed Inversion-of-Control approach allowing Fortran appli-
cations to define operators on Fortran side while still using ForTrilinos types.

This approach allows the user callback functions to interact with native Fortran types and ForTrilinos
class wrapper types. In the same vein, users would not have to manually pass type(C PTR) instances into
and out of the callback function, as the C++ Fortran conversions can be tedious and error-prone, which
indeed is the motivation for using SWIG to generate ForTrilinos. Another important feature is that it allows
the application code to extend Trilinos without having to generate any new interface code, either by hand or
using SWIG. In other words, the Fortran end user should not have to know C++ or SWIG.

Next Steps Our next efforts include:

1. Merge Fortran module to upstream SWIG: The work is in progress to push the developed
SWIG/Fortran functionality to upstream SWIG project. This would allow projects both inside and
outside ECP ecosystem to start using this functionality independently of ForTrilinos to provide Fortran
interfaces to their own libraries. We anticipate multiple projects taking advantage of this capability.

2. Provide wrappers for more libraries: ForTrilinos will continue efforts to increase the number of
wrapped Trilinos libraries. The next phase of the project will include libraries corresponding to nonlinear
solvers, such as NOX. We anticipate that once that functionality is available, many applications in ECP,
including E3SM-MMF, will be able to start using ForTrilinos in the production.

3. Provide interfaces for heterogeneous platforms: ForTrilinos will develop support for heteroge-
neous memory through providing access to Kokkos-based interfaces in Trilinos. This will allow full
exposure to Trilinos capabilities targeting Exascale machines.

Exascale Computing Project (ECP) 114 ECP-RPT-ST-0001-2018

4.3.10 SLATE

Overview The objective of the Software for Linear Algebra Targeting Exascale (SLATE) project is to
provide fundamental dense linear algebra capabilities to the US Department of Energy (DOE) and to the
high-performance computing (HPC) community at large. To this end, SLATE will provide basic dense matrix
operations (e.g., matrix multiplication, rank-k update, triangular solve), linear systems solvers, least square
solvers, singular value and eigenvalue solvers.

The ultimate objective of SLATE is to replace the venerable Scalable Linear Algebra PACKage (ScaLA-
PACK) library, which has become the industry standard for dense linear algebra operations in distributed
memory environments. However, after two decades of operation, ScaLAPACK is past the end of its lifecycle
and overdue for a replacement, as it can hardly be retrofitted to support hardware accelerators, which are an
integral part of today’s HPC hardware infrastructure.

Primarily, SLATE aims to extract the full performance potential and maximum scalability from modern,
many-node HPC machines with large numbers of cores and multiple hardware accelerators per node. For
typical dense linear algebra workloads, this means getting close to 90% of the theoretical peak performance
and scaling to the full size of the machine (i.e., thousands to tens of thousands of nodes). This is to be
accomplished in a portable manner by relying on standards like MPI and OpenMP.

SLATE functionalities will first be delivered to the ECP applications that most urgently require SLATE
capabilities (e.g., EXAALT, NWChem, QMPACK, GAMESS, and CANDLE) and to other software libraries
that rely on underlying dense linear algebra services (e.g., FBSS). SLATE will also fill the void left by
ScaLAPACK’s inability to utilize hardware accelerators, and it will ease the difficulties associated with
ScaLAPACK’s legacy matrix layout and Fortran API. Figure 45 shows SLATE within the ECP software
stack.

Figure 45: SLATE in the ECP software stack.

Key Challenges

1. Designing from the ground up: The SLATE project’s primary challenge stems from the need to
design the package from the ground up, as no existing software package offered a viable path forward
for efficient support of hardware accelerators in a distributed-memory environment.

2. Aiming at a hard hardware target: SLATE’s acceleration capabilities are being developed in an
unforgiving hardware environment, where the computing power of the GPUs exceeds the computing
power of the CPUs, as well as the communication capabilities of the network, by orders of magnitude.

3. Using cutting-edge software technologies: Finally, SLATE is being designed using cutting-edge
software technologies, including modern features of the C++ language, as well as fairly recent extensions
of the OpenMP standard and the MPI standard.

Solution Strategy

1. Deliberate design phase: The need for building SLATE from scratch was a primary focus of SLATE’s
architecture and design in the initial project milestones. First, we conducted a careful analysis of all
the relevant technologies—existing and emerging [141]. Then we designed the initial architecture [142].

Exascale Computing Project (ECP) 115 ECP-RPT-ST-0001-2018

Going forward, the development process is based on alternating feature development with refactoring
and redesign of the underlying infrastructure.

2. Accelerator-centric focus: Hardware accelerators (e.g., graphic processing units [GPUs]), are treated
as first-class citizens in SLATE, and accelerated performance is the primary focus of the performance
engineering efforts. Device performance relies on highly optimized routines in vendor libraries, mostly the
batch matrix multiply routine (i.e., batch gemm). Care is also taken to hide accelerator communication
in addition to hiding message passing communication. To address the network deficiencies in the
long term, the team is investigating cutting-edge algorithmic solutions like communication-avoiding
algorithms [143] and randomization algorithms [144].

3. Community engagement: The SLATE team maintains regular contact with the OpenMP community,
the ECP SOLLVE project, and the broader OpenMP community (joining the OpenMP ARB). The team
also engages vendors and has contacts at Intel, NVIDIA, and AMD. The SLATE team is co-located
with the ECP OMPI-X project and has a direct line of communication with the MPI community.

Recent Progress The most recent development in SLATE is the implementation of all level-3 PBLAS
routines, covering all four precisions, single real (S), single complex (C), double real (D), double complex (Z),
and all combinations of input parameters, side, uplo, and trans. SLATE’s accelerated runs deliver up to a
20× performance improvement over ScaLAPACK multi-core runs on the SummitDev machine at the Oak
Ridge Leadership Computing Facility 1 (Figure 46). A more exhaustive performance analysis is available in
“SLATE Working Note 5: Parallel BLAS Performance Report,” [145].

GF
LO

PS

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

SIZE

0 100000 200000 300000

SLATE
ScaLAPACK

matrix-matrix product with general matrices (dgemm)
16 nodes × 4 devices = 64 devices (NVIDIA P100)

Figure 46: Accelerated performance using SLATE compared to multi-core
performance using ScaLAPACK.

Next Steps

1. Matrix norms: We plan to implement matrix norms by the end of June 2018. This includes routines
for computing the one norm, max norm, infinity norm, and a specialized routine for computing a
column-wise norm, which is required for mixed-precision linear solvers based on iterative-refinement.

2. Linear solvers: We plan to implement linear solvers by the end of September 2018. This includes an
LLT factorization, an LU factorization, an LDLT factorization, and the corresponding forward/backward
substitution routines.

1https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart/

Exascale Computing Project (ECP) 116 ECP-RPT-ST-0001-2018

https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart/

3. Least squares solvers: We will implement least squares solvers by the end of December 2018, including
the QR and LQ factorizations and the routines for the generation and application of the Q matrices.

All four standard ScaLAPACK precisions will be covered, and all routines will support hardware acceleration.

Exascale Computing Project (ECP) 117 ECP-RPT-ST-0001-2018

4.3.11 PEEKS

Overview The PEEKS project is a focused team effort to advance the capabilities of the ECP software
stack in terms of communication-avoiding Krylov solvers and advanced preconditioning techniques featuring
fine-grained parallelism. Previously developed techniques that are available as prototype codes are turned into
production-quality and integrated into the ECP software ecosystem as part of the Trilinos and MAGMA-sparse
software stack. As leading developers of these two software packages (Trilinos and MAGMA-sparse), the
members of the PEEKS project have a strong record of delivering software packages that are used on future
leadership-class supercomputers. In fact, ECP application projects submitted to the DOE explicitly mention
MAGMA and Trilinos as part of the software ecosystem to utilize Exascale computers.

In order to make the new algorithms easily accessible to ECP applications, we design a generic software
interface for the parallel preconditioning techniques in MAGMA-sparse and the communication-avoiding
Krylov solvers. Featuring these interfaces, we integrate the production-ready solvers and preconditioning
techniques into the ECP software stack via the xSDK4ECP software effort. This enables the ECP applications
to adopt the new technology without fundamental changes in their application design.

A particular focus of the PEEKS project is on software portability, and we aim to deliver high performance
across the list of ECP-supported Exascale architectures. This effort is realized using sophisticated software
development and testing practices, ensuring a robust production-quality software that can be relied upon by
ECP application projects.

Key Challenges Running iterative solvers on the next-generation HPC systems results in two major
challenges coming from the hardware architecture:

1. Fine-grained parallelism in a single node that has to be exploited efficiently by the iterative solver and
the preconditioner.

2. Rising communication and synchronization cost.

Both challenges require the redesign of existing iterative solvers with respect to higher parallelism within
all building blocks, and a reduced number of communication and synchronization points. In the last few
decades, numerous efforts have investigated the potential of communication-avoiding (CA) and pipelined
Krylov solvers [146, 147]; however, the implementations usually remained in prototype status and rarely
made it into production code. Similarly, significant effort was put into developing new preconditioning
techniques that allow for the efficient parallelization of the preconditioner setup and the preconditioner
application [148, 149, 150]. Again, most implementations were experimental and rarely adopted by application
code.

Turning the experimental code into production quality alone is rarely sufficient to make applications
adopt the new algorithm technology, as application projects usually refrain from refactoring their code to
integrate new solvers or preconditioners. This motivates a second step that is of comparable importance: the
design of generic interfaces that allow for easy exchange of solver and preconditioner infrastructure without
modifying the application code.

An important aspect for complex application codes to possess is the quick and comprehensive identification
of performance bottlenecks. Against the background of integrating novel solver and preconditioning techniques,
this requires monitoring algorithm-specific counters that provide insight about the appropriateness of certain
parameter choices. Manual code instrumentation is cumbersome and practically prevents the parameter
tuning in complex application codes. This motivates exposure of “software-defined events” (SDE) to external
profiling software that is available on the target hardware.

Solution Strategy The primary thrusts of the PEEKS project are:

1. Generic numerical software interface design: To propel the painless integration of new solver
and preconditioner technology, we design a generic interface that adheres to Better Scientific Software
(BSSw) design principles [151]. The purpose of a generic interface is not restricted to the ECP effort; it
is anticipated to be adopted by other software efforts in the scientific computing community.

Exascale Computing Project (ECP) 118 ECP-RPT-ST-0001-2018

2. Pipelined and CA Krylov methods: We realize pipelined and communication-avoiding Krylov
methods in production-quality code. We provide interfaces and support their integration into existing
application codes.

3. Parallel preconditioning techniques: We implement the parallel generation and application of
popular preconditioning techniques in production-ready code. The preconditioners are capable of
leveraging the parallelism available on a single node (including many-core accelerators) and allow for
easy integration into application codes.

4. Software-defined events (SDE): We team up with the ECP Exa-PAPI project to design and realize
an ecosystem for software-defined events. The idea is to provide application scientists with easy
access to library- and solver-specific metrics via the PAPI interface. This avoids cumbersome code
instrumentation and library recompilation for debugging algorithm behavior or identifying performance
bottlenecks.

Recent Progress

1. We populated a white paper on a generic software interface in the scientific community and col-
lected feedback including design modifications. The white paper is accessible at the PEEKS project
webpage [152].

2. We recently completed the production code implementation of the parallel generation of preconditioners
based on incomplete factorization. In an initial assessment of the hardware anticipated to become the
backbone of the Summit and Sierra pre-Exascale platforms, we identified for benchmark test problems
significant advantages over vendor-tuned functionality (see Figure 47).

3. Recently, we also realized pipeline Krylov solvers in the Trilinos production code ecosystem and analyzed
the performance for ECP application use cases. A performance assessment report is available on the
PEEKS webpage [152].

 AP EC PA OF G3 TH

Problem

0

0.01

0.02

0.03

R
u

n
ti
m

e
 [

s
] cuSPARSE ILU

ParILU (1 sweep)

ParILU (5 sweeps)

Figure 47: Runtime of the ILU preconditioner generation on an NVIDIA V100
GPU using the novel ParILU algorithm realized in the PEEKS project and
NVIDIA’s cuBLAS routine, respectively.

Next Steps Our next efforts are:

1. Integrate novel algorithm functionality into ECP application projects: We are in contact
with domain scientists that are willing to adopt the developed pipelined Krylov solvers and parallel
precondition techniques to serve as production code assessment.

2. Integrate the software-defined events: Together with the Exa-PAPI team, we already explored
the potential of software-defined events (SDE) for numerical LA libraries. We next integrate these into
production code and assess the usability for ECP applications.

3. Parallel preconditioner application: With the parallel preconditioner generation being resolved,
we now focus on efficient preconditioner application using the parallelism available within a single node.
This step is strongly tied to the SDE effort, as we expect significant benefits for application-tuned
parameter choices in particular.

Exascale Computing Project (ECP) 119 ECP-RPT-ST-0001-2018

4.3.12 ALExa

Overview The ALExa project (Accelerated Libraries for Exascale) focuses on preparing the DTK and
Tasmanian libraries for exascale platforms and integrating these libraries into ECP applications. These
libraries deliver capabilities identified as needs of ECP applications: (1) the ability to transfer computed
solutions between grids with differing layouts on parallel accelerated architectures, enabling simulation
projects such as ExaAM and ExaSMR to seamlessly combine results from different computational grids to
perform their required simulations (DTK); and (2) the ability to construct surrogate models with low memory
footprint, low cost and optimal computational throughput, to enable the use of methods for optimization and
uncertainty quantification for large scale engineering problems, as well efficient multi-physics simulations in
projects such as ExaStar (Tasmanian).

These capabilities are being developed through ongoing interactions with our ECP application project
collaborators to ensure they will satisfy requirements of these customers. The libraries in turn take advantage
of other ECP/SW capabilities currently in development, including Trilinos, Kokkos and SLATE. The final
outcome of the ECP project will be a set of libraries deployed to facilities and also made broadly available as
part of the xSDK4ECP project.

DTK (Data Transfer Kit) Purpose: Transfers computed solutions between grids with differing layouts
on parallel accelerated architectures. Significance: Coupled applications frequently have different grids
with different parallel distributions; DTK is able to transfer solution values between these grids efficiently
and accurately. Mesh-free interpolation capabililities: multivariate data interpolation between point clouds;
compactly supported radial basis functions; nearest-neighbor and moving least square implementations;
common applications include conjugate heat transfer, fluid structure interaction, and mesh deformation.
Performace portable search capabilities: threaded and GPU implementations of spatial tree construction;
threaded and GPU implementations of various spatial tree queries; MPI front-end for coordinating distributed
spatial searches between sets of geometric objects with different decompositions; communication plan
generation based on spatial search results. URL: https://github.com/ORNL-CEES/DataTransferKit

Tasmanian (Toolkit for Adaptive Stochastic Modeling and Non-Intrusive Approximation) Purpose: Con-
structs surrogate models for high dimensional problems to help solve large scale engineering and multiphysics
problems Significance: Applications may require reduced representations of higher dimensional data, for
example, to optimize storage of high dimensional tabular data or optimally perform UQ calculations. In
addition, Tasmanian offers capabilities in inverse problems, e.g., calibration and inference. Sparse grids
capabilities: surrogate modeling and design of experiments (adaptive multi-dimensional interpolation); reduced
(lossy) representation of tabulated scientific data; high dimensional numerical quadrature; data mining and
manifold learning. DiffeRential Evolution Adaptive Metropolis (DREAM) capabilities: Bayesian inference;
parameter estimation/calibration; model validation. global optimization and optimization under uncertainty.
URL: http://tasmanian.ornl.gov

Key Challenges
DTK: The general case of transferring data between grids of unrelated applications requires an all-to-all

communication. This is increasingly challenging as communication to computation ratios are decreasing on
successive HPC systems. Furthermore, the gridcell search procedures to locate interpolation points require
tree search methods difficult to optimize on modern accelerated architectures due to vector lane or thread
divergence. Also, maintaining high accuracy for the transfer requires careful attention to the mathematical
properties of the interpolation methods and is highly application-specific. Unlike other, “black box” libraries,
grid transfer methods may require close collaboration with application partners to understand customer
requirements (accuracy and conservation law requirements, distribution of grids, location and layout of grid
data in memory hierarchy, etc.)

Tasmanian: Sparse grid methods require dense linear algebra operations with matrix sizes that may
be large. These operations must be well-optimized for the target architectures, including accelerated nodes.
Uncertainty quantification methods can require many runs of an application as input to forming a surrogate
model, and the runs may have very different runtimes, creating a scheduling problem that must be solved in
order to maximize performance.

Solution Strategy

Exascale Computing Project (ECP) 120 ECP-RPT-ST-0001-2018

DTK: State of the art mathematically rigorous methods are used in DTK to preserve accuracy of
interpolated solutions. Algorithms are implemented in a C++ code base with extensive unit testing on
multiple platforms. Trilinos packages are used to support interpolation methods. Kokkos is used to achieve
performance portability across accelerated platforms.

Tasmanian: To support performance portability across platforms for dense linear algebra operations, a
collaboration with the SLATE ECP project is underway to take advantage of the new library software being
developed. A DAG scheduler will be implemented under the project to enable optimal execution of multiple
application instances for UQ problems.

Recent Progress
DTK: Ongoing work with a growing list of ECP application partners is continuing. Extensive work has

been done to define the Fortran, C and C++ DTK interfaces to support partner projects. A set of benchmark
problems has been developed to guide DTK method and code development. Recent progress has been made
to optimize the search methods for modern-generation GPUs.

Figure 48: DTK tree search, OpenMP and Summitdev GPU speedups

Tasmanian: The infrastructure of Tasmanian has been upgraded to support the broader ECP focus of
the work. GPU acceleration of sparse grid surrogates has been implemented. Tasmanian recently enabled the
ExaStar project to reduce the size of a large-memory table of neutrino opacities by 100X while still preserving
accuracy.

Figure 49: Tasmanian speedup on Titan node using cuBLAS

Next Steps
DTK: A major focus for the near future is to optimize performance for the targeted architectures using

the developed benchmark cases. This will be followed by work on a showcase problem to demonstrate
performance.

Tasmanian: Work will continue to integrate the SLATE dense linear algebra capabilities into Tasmanian
to enable high performance and performance portability. Asynchronous sampling using DAG methods will be
implemented for the sparse grid methods.

Exascale Computing Project (ECP) 121 ECP-RPT-ST-0001-2018

4.4 DATA & VISUALIZATION

This section present projects in Data & Visualization.

Exascale Computing Project (ECP) 122 ECP-RPT-ST-0001-2018

4.4.1 Data & Visualization Software Development Kits

Overview The Data & Visualization SDK effort is focused on identifying meaningful aggregations of
products in this technical area. SDK efforts are in the early stages of planning and execution. Most of the
work on SDKs has been driven from the SW Ecosystem & Delivery technical area. A description of the SDK
effort can be found in Section 4.5.1.

Exascale Computing Project (ECP) 123 ECP-RPT-ST-0001-2018

4.4.2 2.3.4.02 LANL ATDM Data and Visualization

Overview The LANL ATDM Data and Visualization project is focused on developing scalable systems
software for the generation, analysis, and management of data produced by ECP applications. This project
is essential for ECP because existing systems software is inadequate with respect to deploying advanced data
collection and analysis capabilities into HPC data centers. Existing software cannot leverage the enormous
performance and data capacity provided within Exascale data centers such that scientists can effectively
generate insight using the data generated by extreme scale simulations.

Scientific simulations running on Exascale platforms will continue to have access to enormous solid-state
storage tiers that provide opportunities for rapid data acquisition. Similarly, massive campaign storage
systems built from affordable media offer the opportunity for maintaining large data sets over longer time
periods to support longer duration simulations and accompanying analysis. Finally, advanced monitoring
frameworks built using time-series databases and analysis storage systems are deploying within HPC data
centers. Each of these systems requires significant systems software development and integration efforts
to create new opportunities for data management within scientific applications, analysis codes, and HPC
facilities. Upon completion of our project, domain scientists will leverage these new capabilities to improve
the time to insight for scientists using extreme scale scientific simulations.

Key Challenges Re-architecting storage systems to impact both applications and facilities is challenging
both in its breadth and depth. Fundamentally, our approach is focused on unlocking the value that currently
exists within scientific data, but has traditionally been too time consuming to extract. As part of these efforts
we’ve identified the need for software and facility infrastructure that supports finding data within the diverse
set of storage resources

Similarly, our efforts to better provide in-application support for modern analysis techniques require
careful attention to performance, memory use, and data reduction without loss of insight. Scaling challenges.

Solution Strategy The LANL ATDM Data and Visualization ECP project is focused on delivering new
systems software capabilities for creating, analyzing, and managing data for Exascale scientific applications
and Exascale data centers. We have identified 4 distinct areas that are in need of specific improvements.

MarFS is the only campaign storage system within the DOE complex and is also the only HPC storage
system built using scale-out principles with affordable SMR hard drives. The LANL monitoring stack is
leveraging available open source software to build dashboards for monitoring both the data center and
scientific application performance. Finally, the application level software technologies, Cinema and HXHIM,
are being developed in coordination with LANL’s ECP application NGC to ensure that data collected
during the simulation execution is of appropriate frequency, resolution, and viewport for later analysis
and visualization by scientists. Cinema is an innovative way of capturing, storing and exploring extreme
scale scientific data. Cinema is essential for ECP because it embodies approaches to maximize insight from
extreme-scale simulation results while minimizing data footprint

Recent Progress The MarFS file system is currently deployed as the campaign storage tier with over 60PB
of capacity currently under management in our secure computing environment. Recent progress includes the
development of a new highly resilient backend based on nested parity. We have also extended our top-level
erasure approach to use RDMA operations for more efficient coding and data movement.

The LANL monitoring stack has been successfully deployed into multiple computing enclaves within
LANL’s HPC facility. We have procured additional hardware and are currently deploying the monitoring
infrastructure and dashboards into LANL’s secure computing environment. Our approach currently supports
both administrators, analysts, and code teams with multiple dashboards for each role. We continue to refine
our security approach to ensure that new monitoring monitoring dashboards comply with the requirements of
LANL’s CCB, the voting body for ensuring that all LANL deployments are secured appropriately. The use of
our monitoring system by application teams (which monitor information that includes classified data) has
required a highly granular approach to storage and access roles.

Recent progress on HXHIM, a key-value store for HPC platforms, includes the integration of a new
transport layer based on Margo and Mercury (projects under development by the ECP data libs project). The
fundamental architecture of HXHIM now leverage new support for using a high-performance RPC package

Exascale Computing Project (ECP) 124 ECP-RPT-ST-0001-2018

(Mercury) layered beneath a C++ wrapper for Margo (called Thallium). HXHIM provides bulk (multi-key)
primitives that enable efficient use of HPC interconnects and typical scientific storage workloads.

Figure 50: Screen capture of both the Cinema:Newsfeed viewer (left and
Cinema:Explorer viewer, showing different views of data from the workflow
described above. On the left, the Cinema:Newsfeed viewer shows a graph resulting
from the change detection algorithm, and snapshots from the timesteps at the
inflection points for the change detection algorithm. This viewer shows a compact
‘newsfeed’ view of the end-to-end analysis. Clicking on the images in this viewer
takes the scientist to a more detailed view of the overall set of features captured
during the simulation. Because these viewers are implemented in a browser, it is
easy to link different viewers together for new tasks and workflows.

Recent progress on the Cinema project has focused on development of capability and workflows for change
detection in-situ data analysis artifacts. These promote new types of analysis of data from ECP simulations,
including automated and assisted analysis. We are creating capabilities that allow scientists more options
in analyzing and exploring the results of large simulations by provide a workflow that 1) detects features
in-situ, 2) captures data artifacts from those features in Cinema databases, 3) promotes post-hoc analysis of
the data for things such as change detection, and 4) provides data viewers that allow interactive, structured
exploration of the resulting artifacts. In particular, in our most recent milestone, we ran a Nyx simulation
and captured in-situ features (isosurfaces), saved a Cinema database to disk, analyzed that database to
determine inflection points in the complexity of those isosurfaces, and presented the results in a newsfeed
viewer linked to other views of the data. This overall workflow provides a flexible method of applying new
algorithms to the analysis and visualization of extreme scale data.

Next Steps We are continuing to add features and work on improving code quality for each of our projects.
This includes improving the performance, scalability, and maintainability of each of the associated subprojects.
Our MarFS project is focused on improving read/write performance via increased protocol efficiencies. Our
monitoring work continues to explore the most efficient indexing for supporting popular queries without
dramatically increasing storage requirements. HXHIM is in the process of adding layers for managing memory
and network resources efficiently. Cinema is identifying new application workflows that can be reasonably
made efficient and new analysis methods to apply efficiently for cinema users.

Exascale Computing Project (ECP) 125 ECP-RPT-ST-0001-2018

4.4.3 LLNL ATDM Data & Viz Projects: Workflow

Overview The ATDM Workflow project at LLNL has a long term vision to enable reproducible and
pedigreed computational science and introduce advanced analytics and machine learning capabilities to
our user community. We are building an ecosystem of re-usable components for user workflows that will
enhance the end-to-end productivity of ASC HPC assets and enable users to introduce modern data analytics
technologies to their workflows. The Workflow project is focused on three areas prioritized by the LLNL
user community: problem setup, simulation management, and data management and analytics. The project
focuses on an ecosystem of tools and libraries because there is no single overarching workflow system that
can meet the needs of users in the wide variety of domains at LLNL. The tools produced by this project
are focused on reducing extrinsic cognitive load, that is, to reduce the bookkeeping and repetitive one-off
scripting that is required with current file-oriented workflows. The project seeks to leverage modern data
analytics capabilities, by providing tools that users can leverage to inject simulation information into these
systems.

Key Challenges The three biggest challenges for implementing improved problem setup, simulation
management, and data management and analytics for users are: user community heterogeneity and complexity,
security requirements, and user adoption. First, the large number of user domains and the number of largely
manually driven workflows in use precluded the installation of a single encompassing workflow management
and product lifecycle management capability. Second, the security posture required to install tools at NNSA
labs makes it difficult to stand up federated infrastructures and servers. Finally, adoption of tools into
existing workflows requires that the tools provide a clear value proposition to the user community, and any
tool that requires large changes in existing practice faces an increased chance of being rejected by users. This
is particularly true for systems that seek to capture full provenance and pedigree data: they often require
centralized servers and that all workflow activities take place in a particular tool or environment.

Solution Strategy We established three sub-projects to focus on aspects of the three areas prioritized by
users:

1. C2C: the Contours to Codes project focused on building tools for interchanging and streamlining the
process of going from documents describing experiments to the corresponding simulation configurations.
C2C has adopted a format for 2D geometry defined by Los Alamos National Laboratory, and has built
Python and C++ parsers for this toolset with features needed for LLNL applications.

2. Siboka: an ecosystem of scientific workflow components to facilitate workflow and data management,
increase pedigree/reproducibility, and enable the use of modern analytics technologies. Siboka includes
a set of Python packages and command line tools for capturing non-bulk data and meta-data from
simulation runs, importing data to SQL and Cassandra (a column store), allow querying of data in
those backends, and exporting results for use in downstream tools. The core tool being developed is
called Sina, which enables these operations. In addition, a specification for a JSON schema and toolset
called Mnoda is being developed to generalize an application specific tool created by the project to
gather and query non-bulk data and meta-data from simulation run directories.

3. Syflux (formerly VV4ALE3D): a prototype web portal for setting up, running, and managing
simulations and their results. The original prototype, VV4ALE3D, is integrated with the Lorenz web
infrastructure deployed in Livermore Computing. The VV4ALE3D application is still deployed and
hosted on the Livermore Computing web infrastructure. Syflux represents an updated version based
on the Django web infrastructure and hosted on project-managed web servers outside the data center
authentication realm. The team seeks to develop into a problem setup data portal as well as a way to
deploy workflow management tools.

These projects represent composable tools targeting distinct aspect of user pain points. C2C enables
interchange of problem setup information across applications, and a format in which to store and curate
the results of the time consuming process of setting up new simulations. Siboka presents the users with
distinct and focused Python packages that they can include in existing scripts, so that they can incrementally
adopt the technologies they see as relevant to their work. Syflux and associated exploration of Jupyter,

Exascale Computing Project (ECP) 126 ECP-RPT-ST-0001-2018

represents customizable ways to provide access via web-browser to simulation data, problem setup and related
databases, and documents. In this way, the team mitigates risk by providing the user community with a set of
components that encompasses best practices, common operations, and next-generation capabilities, allowing
the user community to leverage them to build custom workflows where needed while reducing duplicated
work.

Recent Progress C2C recently released an initial C++ parser to LLNL application codes, a key deliverable
to enable adoption of a common 2D geometry format across our user-base. The team has also defined an
assembly file specification to allow manipulation and composing of lower level geometric information, and
implemented a set of python tools for this. These tools are now being tested by a few initial users and they
have demonstrated that the tools can be used for code inter-comparison.

The Siboka team has recently created an importer for Cassandra, a scalable, open-source column store
used extensively by companies like Netflix and Walmart. The team demonstrated the ability to query and
export data from SQL using the Sina package, and plans to extend that functionality to the Cassandra
back-end. The team is now exploring how JupyterHub, Jupyter Notebooks, and the newly released (in beta)
JupyterLab enhance sharing and reproducibility while incorporating these modern database capabilities. The
first version of the Mnoda schema has been defined, and the Cassandra importer leverages that tool to map
simulation meta-data and non-bulk scalars and file paths to the Cassandra and SQL back-ends.

The Syflux effort has stood up a Django-based web portal, and has enabled users to upload and curate
data and media files and implemented a basic permission model for them. The ability to cross-link resources
(input files, output files, and documents/reports) was also added to the prototype.

Next Steps

1. C2C: the highest priority for the team is to integrate the C++ library into the first application code
and continue to enhance assembly files.

2. Siboka: Release an initial Mnoda schema, and create a specification for a C linkable API for writing
data for applications that do not want to write the JSON output directly. Enhance the support for
Cassandra and release an updated version of Sina to our users, as well a set of JupyterHub examples.

3. Syflux: prototype an integration of multiple databases, such as the Granta database into the portal.

Exascale Computing Project (ECP) 127 ECP-RPT-ST-0001-2018

4.4.4 SNL ATDM Data and Visualization: IOSS and FAODEL

Overview The SNL ATDM Data and Visualization project is developing data management software to
improve how applications store and exchange large datasets efficiently on Exascale platforms. The data
portion of this project is composed of two related efforts: (1) production work focused on improving Sandia’s
IOSS library for mesh datasets and (2) research work focused on developing new communication software
named FAODEL that enables applications in a workflow to exchange data more efficiently.

IOSS: IOSS is a production I/O library for mesh datasets used in many Sandia applications. IOSS provides
a common front end for mesh data and supports multiple back-end file databases (e.g., Exodus and
CGNS). This project is enhancing IOSS is two ways. First, a new hybrid mesh capability is being
developed that will allow IOSS to support both structured and unstructured grids. This capability will
allow users to use one API to access both forms of geometry data, thereby allowing them to more easily
choose a meshing strategy that matches an application’s needs. Second, IOSS is being enhanced to
natively support Burst Buffers. These extensions will simplify the process of using Burst Buffers and
accelerate general storage performance.

FAODEL: One of the challenges for production simulation work in Exascale computing is that workflows are
becoming increasingly more sophisticated. Analysts routinely use workflows that use a variety of parallel
tools to groom datasets, simulate different effects, and analyze a collection of results. Coupling different
simulation tools together into a monolithic job is challenging due to library incompatibilities and
fundamental differences in application runtimes (e.g., bulk synchronous parallel vs. asynchronous many-
task (AMT) programming models). Many workflows instead run each parallel tool as an independent
job and use the file system as the mechanism for handing off data in the workflow.

This project is developing new communication software called FAODEL (Flexible, Asynchronous,
Object Data-Exchange Libraries) 2 to provide better primitives for moving data between applications
in Exascale platforms. In addition to supporting RDMA transfers of data from one MPI or AMT job
to another, objects may be cached in distributed memory or nonvolatile memory resources.

Key Challenges The key challenges for IOSS improvements are largely related to production stability.
Adding support for hybrid meshes and Burst Buffers must be done in a way that does not cause significant
changes to current APIs, while at the same time exposes enough functionality to be useful.

The key challenges in developing FAODEL to provide new data management services include the following:

1. Job-to-Job Support: Workflows need a way to exchange data from one running application job to
another in an efficient manner. While most RDMA communication libraries provide good intra-job
performance, they do not provide mechanisms to support inter-job operations. Inter-job communication
is complicated by the fact that the networks in many platforms have vendor-specific access controls
that block inter-job communication by default. FAODEL must interface with these access controls. It
must also avoid disturbing the application’s native intra-job communication (e.g., MPI).

2. Flexible Management of Resources: Service developers need a flexible way to reason about how
an application’s in-memory datasets are exposed to other applications. In addition to hosting data in
dedicated staging nodes, applications should be able to host data in place for efficiency.

3. Asynchronous and Event-Driven Semantics: AMT and analysis applications are asynchronous
and require event-driven semantics that allow operations to trigger as objects migrate through the
platform. Traditional remote procedure call (RPC) do not map well to this environment.

Solution Strategy FAODEL is designed to provide communication libraries to implement advanced
data management services. As illustrated in Figure 51(a), it is composed of five core libraries: a low-level
RDMA portability library (NNTI), an out-of-band RESTful API for establishing job-to-job communication
(Webhook), a network memory manager (Lunasa), an asynchronous communication engine (OpBox), and a
distributed key/blob service (Kelpie).

2In Gaelic, a faodhail is a land bridge that forms between islands at low tide.

Exascale Computing Project (ECP) 128 ECP-RPT-ST-0001-2018

Figure 51: (a) FAODEL software stack and (b) a workflow example.

Figure 51(b) depicts an example of how multiple jobs of different types are connected together to implement
a workflow. When a workflow manager dispatches these jobs to resources in the platform, it defines pools
of nodes that are responsible for housing each dataset’s objects. A pool may be internal or external to a
job, and includes a definition of how data is distributed across pool members (e.g., a distributed hash table).
Data transfers with a pool are coordinated through asynchronous communication state machines managed by
OpBox. Downstream applications may choose to subscribe to data objects in a pool instead of polling for
availability. If a requested object in a subscription is not available, OpBox pauses the request’s state machine
until it becomes available.

FAODEL users typically implement custom data interface modules (DIMs) to work with application-
specific datasets. These interfaces decompose data into a collection of contiguous objects that can be
dispersed to a pool as needed. While users are free to define how objects are structured and indexed in a
DIM, the expectation is that data is organized in a form that is ready-to-use by applications. DIMs have been
constructed for ATDM’s EMPIRE and SPARC applications. A general mesh interface will be constructed to
allow IOSS users to use FAODEL transparently.

Recent Progress

1. FAODEL Integration into EMPIRE: I/O interfaces have been constructed for EMPIRE/Fluid and
EMPIRE/PIC to allow the applications to use FAODEL to store/retrieve mesh, field, and particle data.
This implementation targets a checkpoint/restart use case but could be extended to couple EMPIRE to
analysis tools.

2. Improved Asynchronous Messaging: FAODEL allows users to express a series of communication
operations as a state machine that is updated as relevant events happen. FAODEL was updated to
allow different state machines to be processed in parallel to improve concurrency.

3. Initial Open Source Release: FAODEL software was reviewed and approved for external release
under the MIT license. The release is currently being transitioned to https://github.com/faodel/

faodel.

Next Steps

1. EMPIRE/FAODEL Performance Experiments: The FAODEL interfaces for EMPIRE will be
tested and benchmarked on the Trinity platform.

2. Transition to Sierra: FAODEL will be updated to run on the CORAL/Sierra architecture.

Exascale Computing Project (ECP) 129 ECP-RPT-ST-0001-2018

https://github.com/faodel/faodel
https://github.com/faodel/faodel

4.4.5 SNL ATDM Data and Visualization: Visualization Capabilities

Overview The SNL ATDM Data and Visualization work consolidates existing ATDM activities in scalable
data management and visualization. Part of the responsibilities of the SNL ATDM Data and Visualization
Project is the maintenance and development of visualization resources for ATDM applications on Exascale
platforms. The ATDM Scalable Visualization project provides visualization and analysis required to satisfy the
needs of the ASC/ATDM applications on next-generation, many-core platforms. This involves many activities
including the re-engineering of visualization algorithms, services, and tools that enable ASC customers to
carry out data analysis on ASC systems and ACES platforms. Current tools include scalable data analysis
software released open source through ParaView [153], VTK [154], and Catalyst [155]. We are also both
leveraging and contributing to VTK-m [156], a many-core visualization library, to satisfy our visualization
needs on advanced architectures.

The scope of the Scalable Visualization under ATDM at SNL is R&D for the programming model and
implementation of visualization code for ASC/ATDM projects and ASC/ATDM application support.

Key Challenges The scientific visualization research community has been building scalable HPC algorithms
for over 15 years, and today there are multiple production tools that provide excellent scalability [153, 155].
That said, there are technology gaps in data analysis and visualization facing ATDM applications as they
move to Exascale As we approach Exascale, we find that we can rely less on disk storage systems as a holding
area for all data between production (by the simulation) and consumption (by the visualization and analysis).
To circumvent this limitation, we must integrate our simulation and visualization into the same workflow and
provide tools that allows us to run effectively and capture critical information.

Solution Strategy The SNL ATDM Visualization effort is addressing its challenges by leveraging and
expanding the following technologies.

1. In situ visualization We are integrating our HPC visualization capabilities into our ATDM simulations
by leveraging the Catalyst in situ visualization library [155]. Catalyst is part of the code supported
by the ALPINE project (WBS 2.3.4.12), and we leverage this software by integrating it with ATDM
application codes and applying it in our simulation runs.

2. Data compression Data compression allows us to make more effective use of the bandwidth and
capacity of our storage systems. We are developing the TuckerMPI library [157] to provide compression
specifically optimized for distributed parallel simulation data.

3. Algorithm portability Running visualization in situ with a simulation mandates executing the
visualization algorithms on the same compute resources. Thus, our visualization software must be
able to run on ASC systems and ACES platforms. We are leveraging the VTK-m software [156] being
developed by the ECP/VTK-m project (WBS 2.3.4.13), optimizing the library for ACES platforms,
and integrating the code with our ATDM software.

Recent Progress SNL ATDM has several ongoing visualization-centric activities.

In Situ Visualization Under ATDM, several Catalyst adapters are under development for Sandia
simulation codes. These adapters leverage a range of in situ technologies such as shallow copy of simulation
data structures for reduced memory footprint, data compression of simulation grid data fields, and the use of
VTK-m filters for on-node compute performance.

SPARC (Sandia Parallel Aero sciences Research Code) [158] is a massively parallel compressible CFD
code that is designed to be highly scalable. SPARC uses a hybrid structured/unstructured mesh format, and
there is ongoing development to construct a Catalyst adapter that efficiently uses memory to represent this
data structure using shallow copy data structures provided by ParaView.

Nalu [159] is a massively parallel unstructured low Mach flow code. An adapter for Catalyst was developed
for Nalu using the existing Seacas IOSS adapter for the Sierra framework to output unstructured mesh data
to Catalyst. Examples of in situ visualization with Nalu are shown in Figure 52.

Exascale Computing Project (ECP) 130 ECP-RPT-ST-0001-2018

Figure 52: Examples of an in situ visualization of a Nalu simulation on 2560
processes of airflow over a wind turbine airfoil. At left: a cross-sectional slice
through the airfoil along the direction of flow colored by Q criterion. At right:
detail at the leading edge of the wind turbine airfoil.

Sparta [160] is a Sandia developed massively parallel DSMC (Direct Simulation Monte Carlo) code. Sparta
uses a unique hierarchical Cartesian grid structure to track simulation particle movement and interaction.
The Catalyst adapter implementation for Sparta uses shallow copy data structures to represent this hierarchy
as an unstructured grid without forcing unnecessary copies of Sparta data structures.

Data Compression Although the TuckerMPI compression library is already available as an open
standalone git repository [161], we pursued three independent approaches to integrate TuckerMPI compression
with the in situ technologies being developed in parallel: (1) modify Catalyst adapter, integrated with a
miniFE demo example, to perform TuckerMPI compression (copy input data, create tensor data structures,
perform compression over distributed data), (2) create a standalone “TuckerWriter” plugin for ParaView,
packaged as a standalone shared object library (links appropriately with the separately built Tucker Library)
that can be loaded from a ParaView GUI, and, (3) extend the SPARC Catalyst direct output branch to work
alongside SPARC writer output. This extension allows Catalyst output from SPARC input decks that request
output in a specific file format (CGNS), and will be used to construct test cases for TuckerMPI compression.

In addition to TuckerMPI integration with ParaView/Catalyst, we are also conducting R&D to extend
the capability to compress unstructured non-rectilinear mesh data using functional tensor approximations.
We are researching an approach whereby multi-variate data on an unstructured mesh is treated as a high-
dimensional function (spatial dimensions, time), which may be approximated as a small sum of product of
univariate functions. Encoding the univariate functions requires storing only a small number of function
coefficients/parameters, resulting in large compression.

Algorithm Portability The SNL ATDM project is helping VTK-m run better on ASC platforms with
multiple activities. First, we are improving the parallel radix sorting operation in VTK-m. Parallel sorting
is a core component of many of our visualization algorithms. Sorting helps us group common identifiers
and conditions index sequences for fast searching. Improving the performance of sort within the VTK-m
framework implicitly improves the performance of many algorithms that already use it. We are implementing
a parallel radix sorting algorithm based on the work of Satish, et al. [162]. Our initial experiments indicate
that the radix sort generally outperforms the default TBB sort algorithm typical data types.

Second, we are working to improve VTK-m’s support vector instructions to improve performance on
processors such as the Intel Xeon and Xeon Phi. Compilers work to identify code loops where vectorization
can be applied, but in VTK-m changes were required to help the compiler. To enable vectorization across
multiple complex data types, we are experimenting with loading values in blocks as we schedule an algorithm.
This allows the compiler to better vectorize worklet functions that are now accessing well behaved blocks of
memory. Given a sufficiently complex worklet, the benefit of better vectorization outweighs the overhead of
maintaining blocks of values.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-NA0003525.

Exascale Computing Project (ECP) 131 ECP-RPT-ST-0001-2018

4.4.6 2.3.4.05 STDM07-VeloC: Very Low Overhead Transparent Multilevel Checkpoint/Restart

Overview The VeloC project aims to provide a checkpoint/restart framework that leverages multi-level
checkpointing (the combination of several resilience strategies and heterogeneous storage) to ensure that ECP
applications run to completion with minimal performance overhead. It delivers a production-ready solution
that increases development productivity by reducing the complexity of having to deal with a heterogeneous
storage stack and multiple vendor APIs. VeloC offers a client library that can be used directly by the
applications or indirectly by I/O libraries (e.g., HDF5, ADIOS, PnetCDF) to capture local application states,
which are then coordinated and persisted using a resilience engine. The VeloC software intends to serve ECP
applications such as HACC, NWChem, QMCPACK, LatticeQCD and EXAALT.

Key Challenges Applications typically employ simple checkpoint-restart mechanisms to survive failures
that directly use a parallel file system. However, I/O bottlenecks to to concurrent writes are a known
limitation in this case. At Exascale, failures are more frequent but the available file system I/O bandwidth per
compute unit decreases. Therefore, there is a need to checkpoint more frequently but simple checkpointing
becomes even less scalable and efficient. To compensate for the decreasing I/O bandwidth per compute
unit, the storage stack is become increasingly more heterogeneous (e.g. NVRAM, burst buffers, key-value
stores, etc.). This aspect introduces a new level of complexity for application developers: they need to adapt
their checkpoint strategy to a variety of new storage sub-systems that may or may not be available on every
machine. This is further amplified by the diversity of vendors that offer custom APIs. Thus, it is important
to provide a scalable high-performance checkpointing solution that can leverage the heterogeneous storage
stack transparently without sacrificing ease of use and flexibility.

Solution Strategy To address these challenges, VeloC is based on several design principles.
First, it implements multi-level checkpointing. Specifically, it persists the local checkpoints to other nodes

using collaborative resilience strategies (e.g., partner replication and partner erasure coding) and to external
storage that may include a complex heterogeneous hierarchy (e.g., parallel file system, burst buffers, I/O
nodes, key-value stores, etc.). Based on experience from previous efforts such as FTI [163] and SCR [164],
this strategy greatly improves performance and scalability.

Second, it offers a simple API that enables users to either manually capture checkpoints into node-local
files or to define memory regions that are automatically serialized into node-local files. All interactions with
the complex heterogeneous storage stack is transparently handled by VeloC, which facilitates ease-of-use.

Third, VeloC separates the management of node-local checkpoints from the actual implementation of
the resilience strategies by using a client library that interfaces with a resilience engine. The engine can be
linked directly into the application and will run in synchronous mode, or it can be part of a separate backend
process that facilitates an asynchronous mode where the resilience strategies are applied in the background
to avoid blocking the application. This ultimately leads to better performance and scalability.

Recent Progress We have interviewed and met with several ECP application team in an effort to
understand their checkpointing needs. Most of our current efforts involved the HACC, ECP NWChem-
X, Lattice QCD and QMCPACK teams. These interviews helped us understand the needs to the ECP
applications and ensure that they get reflected in the VeloC API specification. In the last several months, the
VeloC team has developed a stable version of the VeloC API specification, which is currently in the process
of being implemented.

Parallel to the VeloC API definition, we also worked on the architecture and design of the VeloC software.
The VeloC software design is based on a modular and scalable architecture, as shown in Figure 53a. The design
details of the VeloC software can be found in the VeloC design document, submitted to ECP during past
milestones. Working off the design specification, we implemented the VeloC software according to the design
principles introduced in the previous section. We have worked on understanding, refactoring, modularizing
several components of the Fault Tolerance Interface (FTI) and Scalable Checkpoint/Restart (SCR) library to
extract self-contained modules that can be used in the VeloC software. We recently completed the integration
of self-contained modules and other driver modules into a flexible engine that allows VeloC the capability of
running in synchronous mode directly in the application processes or in asynchronous mode in a separate
active backend process.

Exascale Computing Project (ECP) 132 ECP-RPT-ST-0001-2018

(a) Architecture: modular client and engine (running in synchronous and asynchronous
mode)

(b) Results: checkpointing overhead for a weak scaling experiment (local, local + sync
mode, local + async mode). Lower is better

Figure 53: VeloC: Very Low Overhead Checkpoint-Restart

We have run an initial stress test of VeloC on the ANL Theta platform (KNL nodes, local SSD, Lustre
parallel file system) using a heat distribution application benchmark. The test consists of a weak scaling
experiment (64 processes per node) where the checkpointing overhead (runtime with a checkpoint vs. baseline
without) is measured for three approaches: (1) node-local checkpoints written to the SSD; (2) node-local
checkpoints followed by synchronous flush to the parallel file system; (3) node-local checkpoints followed by
asynchronous flush to the parallel file system. The results are depicted in Figure 53b. As can be observed,
asynchronous checkpoints are faster than synchronous checkpoints by a significant margin and more scalable.

We are also interacting with ALCF to understand the constraints for VeloC deployment on CORAL
systems, such as the configuration of the resource and job manager and the possibility to run two MPI
executions (application + back-end) on each node.

Next Steps The team will be working on the VeloC software release for the next quarter. Our goal is to
finalize the integration and testing of all modules, clean up the code and run end-to-end testing. Furthermore,
we will add documentation and tutorials to facilitate easy adopting in our user community.

Exascale Computing Project (ECP) 133 ECP-RPT-ST-0001-2018

4.4.7 ECP EZ: Fast, Effective, Parallel Error-bounded Exascale Lossy Compression for Sci-
entific Data

Overview Extreme scale simulations and experiments are generating more data than can be stored,
communicated and analyzed. Current lossless compression methods suffer from low compression ratio and do
not adequately address the limitations in storage bandwidth and storage space of projected Exascale systems.
Existing lossy compressors, although enabling greater data reduction, are not covering the needs of many
ECP applications.

The EZ project is extending and improving the SZ lossy compressor for structured and unstructured
scientific datasets respecting user-set error controls. SZ offers an excellent compression ratio and compression
time. Further work is essential, however, to improve our SZ lossy compressor for ECP scientific datasets,
while ensuring that user-set error controls are respected. Specifically, we are maximizing the effectiveness
of SZ’s three core compression algorithms: prediction, quantization, and coding. The EZ project focuses
on optimization of the compression quality, including improvement of compression ratio, memory cost
minimization, parallelization, addition of more error controls, and integration of SZ into parallel I/O
environments (PnetCDF, ADIOS, HDF5). Our goal is to produce a high-quality lossy compressor responding
to the needs of ECP Exascale applications and experiment users. To this end, we are working with multiple
ECP application teams, including ExaSky cosmology teams (HACC and Nyx), molecular dynamics simulations
groups (EXAALT, QMCPACK), x-ray laser imaging experimentalists (ExaFEL), and computational chemists
(NWChem-X) to optimize SZ for their applications and to harden SZ for production use.

Key Challenges There are several key challenges in the EZ project.

• One key challenge in designing an efficient compressor for HPC applications is the large diversity of
scientific simulation data, such as various dimensions, different scales, and dynamic data changes in
both space and time.

• Another challenge is that the scientific data may have irregular characteristics. The simulation data
may exhibit spiky changes in small local areas. For instance, all the key data in the HACC code are
stored in six 1D arrays: three coordinate fields (xx, yy, zz) and three velocity fields (vx, vy, vz). It is
hard to get a high compression ratio because of lack of correlations between adjacent particles in each
array.

• It is non-trivial to parallelize the lossy compressor SZ to get a high speed-up because of the relatively
strong data dependencies in the data compression and decompression phase. The data prediction
step, for example, relies on the neighboring data points for each data point, such that the entire
compression/decompression has to be split into multiple blocks. How to perform the block-wise
compression efficiently is an uneasy issue because block-wise prediction may degrade the prediction
accuracy.

• Integrating SZ into parallel I/O libraries (such as PnetCDF and HDF5) is non-trivial, because these
I/O libraries are designed and implemented differently with various interfaces. We need to develop the
integration codes based on the I/O libraries’ interface with minimal cost.

Solution Strategy As for the first challenge, we keep a close communication with ECP application users
to understand their specific demands on the lossy compression. For instance, we have a weekly meeting with
ExaSky team to discuss the required error bounds and compression quality of cosmology simulation data.
We also provide multiple types of error bounds (such as absolute error bound, PSNR, relative error bound)
allowing users to control the errors in different ways.

As for the second challenge, we develop some particular compression techniques based on specific data
features across different applications.

As for the third challenge, we split the entire dataset into multiple blocks based on the number of
threads/ranks and conduct an adaptive prediction method to optimize the prediction accuracy dynamically.

We overcome the last challenge by understanding the principle of the I/O libraries (either reading the
related documents or communicating with the I/O library developers closely).

Exascale Computing Project (ECP) 134 ECP-RPT-ST-0001-2018

Recent Progress SZ has been released as an open source on GitHub (http://github.com/disheng222/SZ).
Figure 54 (a) demonstrates the core step (data prediction and linear-scaling quantization) in SZ lossy
compression using a 2D dataset. Our customized improved compression techniques for different datasets
mainly focus on various prediction methods based on data features. Figure 54 (b) demonstrates the visual
quality of decompressed data for ExaSky-NYX VX field. We can see that SZ has a pretty high visual quality
even with a high compression ratio up to 156:1.

Figure 54: Illustration of data prediction in SZ and visual quality of decom-
pressed data for ExaSky-NYX VX field

We have improved the compression quality for some ECP applications significantly. For instance, we
develop PaSTRI code that can significantly improve the compression ratio for GAMESS two-electron integral
datasets by leveraging the potential scaled repeated patterns. We also implemented effective compression
method supporting point-wise relative error bounds for the ExaSky project and studied its lossy compression
quality with multiple resolutions. Experiments with point-wise relative error bound based compression shows
that our solution leads to 31%-210% higher compression ratio than other lossy compressors do.

We developed the multi-thread OpenMP version for SZ and evaluate the parallel compression performance,
as presented in Figure 55 (a). It is observed that the compression can obtain a speed-up of 250+ and the
overall performance using lossy compression+I/O can be improved 15X compared with the data I/O without
lossy compressor. we can observe that the OpenMP version of SZ obtains about 6:1∼16:1 performance
gain when using 8∼64 threads to do the compression/decompression in parallel. Decompression has higher
performance gain than compression as the number of cores grow because it does not need to construct the
Huffman tree.

We completed the integration of SZ into three popular I/O libraries (PnetCDF, ADIOS, and HDF5).
Figure 55 (b) and (c) present the performance evaluation using PnetCDF integrated with SZ.

Figure 55: Performance evaluation of SZ with OpenMP and PnetCDF

Next Steps Our next efforts are:
Improve compression ratio by leveraging the smoothness of the data in the time dimension.

(1) Explore techniques for compression in time dimension; (2) Integration of compression in time dimension.
(3) Test and performance evaluation on available CORAL systems

Exascale Computing Project (ECP) 135 ECP-RPT-ST-0001-2018

4.4.8 UnifyCR – A file system for burst buffers

Overview The view of storage systems for HPC is changing rapidly. Traditional, single-target parallel file
systems have reached their cost-effective scaling limit. As a result, hierarchical storage systems are being
designed and installed for our nation’s next-generation leadership class systems. Current designs employ
“burst buffers” as a fast cache between compute nodes and the parallel file system for data needed by running
jobs and workflows. Burst buffers are implemented as compute-node local storage (e.g., SSD) or as shared
intermediate storage (e.g., SSD on shared burst buffer nodes).

Because burst buffers present an additional complexity to effectively using supercomputers, we are
developing UnifyCR, a user-level file system, highly-specialized for shared file access on HPC systems with
distributed burst buffers. UnifyCR will address a major usability factor of the CORAL and other future
systems, because it will enable applications to gain the performance advantages from distributed burst buffers
while providing ease of use similar to that of a parallel file system.

Key Challenges The hierarchical storage for future HPC systems will include compute-node local SSDs
as burst buffers. This distributed burst buffer design promises fast, scalable I/O performance because burst
buffer bandwidth and capacity will automatically scale with the compute resources used by jobs and workflows.
However, a major concern for this distributed design is how to present the disjoint storage devices as a single
storage location to applications that use shared files. The primary issue is that when concurrent processes
on different compute nodes perform I/O operations, e.g., writes, to a shared file, the data for the file are
scattered across the separate compute-node local burst buffers instead of being stored in a single location.
Consequently, if a process wants to access bytes from the shared file that exist in the burst buffer of a different
compute node, that process needs to somehow track or look up the information for locating and retrieving
those bytes. Additionally, there is no common interface across vendors for accessing remote burst buffers, so
code for cross-node file sharing will not be easily portable across multiple DOE systems with different burst
buffer architectures, further increasing programming complexity to support shared files.

For the reasons outlined above, it is clear that without software support for distributed burst buffers,
applications will have major difficulties utilizing these resources.

Figure 56: UnifyCR Overview. Users will be able to give commands in
their batch scripts to launch UnifyCR within their allocation. UnifyCR will
work with POSIX I/O, common I/O libraries, and VeloC. Once file operations
are transparently intercepted by UnifyCR, they will be handled with specialized
optimizations to ensure high performance.

Solution Strategy To address this concern, we are developing UnifyCR, a user-level file system, highly-
specialized for shared file access on HPC systems with distributed burst buffers. In Figure 56, we show a

Exascale Computing Project (ECP) 136 ECP-RPT-ST-0001-2018

high level schematic of how UnifyCR will work. Users will load UnifyCR into their jobs from their batch
scripts. Once UnifyCR is instantiated, user applications can read and write shared files to the mount point
just like they would the parallel file system. File operations to the UnifyCR mount point will be intercepted
and handled with specialized optimizations that will deliver high I/O performance.

Because checkpoint/restart has been reported to cause 75-80% of the I/O traffic on some HPC systems,
we target our approach at checkpoint/restart workloads. Thus, UnifyCR will address a major usability factor
of the CORAL and other future systems. We will design UnifyCR such that it transparently intercepts I/O
calls, so we expect it to integrate cleanly with other software including I/O and checkpoint/restart libraries.
Additionally, because UnifyCR is tailored for HPC systems and workloads, it can deliver high performance.

Recent Progress In the first year of this project, the team spent the bulk of the time evaluating the
research prototype code that forms the basis for UnifyCR and designing the framework for the production
version of UnifyCR (See Figure 57). The major changes we plan to make to the research prototype code
include: replacing MPI communication with DataLib software; integrating UnifyCR with resource managers;
implementing support for advanced storage devices (burst buffers); and implementing support for I/O libraries
and VeloC.

Figure 57: UnifyCR Design. The UnifyCR instance will consist of a dynamic
library and a UnifyCR daemon that runs on each compute node in the job. The
library will intercept I/O calls to the UnifyCR mount point from applications,
I/O libraries, or VeloC and communicate them to the UnifyCR daemon that will
handle the I/O operation.

Upon completing the evaluation and design milestones, we released an alpha version of the code UnifyCR
0.1 on GitHub at https://github.com/LLNL/UnifyCR. Subsequently, we implemented support for easily
starting and stopping UnifyCR from within a user batch script. In addition, we have performed other
code changes to ensure production ready use of UnifyCR, including adding testing, improving the build
mechanisms, improving the I/O interception functionality; and including code documentation.

Next Steps For our next milestone effort, we are going to be implementing support for I/O libraries into
UnifyCR. We are targeting HDF5, MPI-IO, PnetCDF, and ADIOS. When user applications utilize these
high level I/O libraries, we will ensure that their I/O operations are intercepted and handled as easily as if
they came from POSIX in the application.

Following this milestone, we will begin the effort of supporting the advanced storage hardware that will
be available on the upcoming CORAL systems at LLNL and ORNL (Sierra and Summit).

Exascale Computing Project (ECP) 137 ECP-RPT-ST-0001-2018

https://github.com/LLNL/UnifyCR

4.4.9 ExaHDF5

Overview Hierarchical Data Format version 5 (HDF5) is the most popular high-level I/O library for
scientific applications to write and read data files. The HDF Group released the first version of HDF5 in 1998
and over the past 20 years, it has been used by numerous applications not only in scientific domains but also
in finance, space technologies, etc. HDF5 is the most used library for performing parallel I/O on existing HPC
systems at the DOE supercomputing facilities. NASA gives HDF5 software the highest technology readiness
level (TRL 9), which is given to actual systems “flight proven” through successful mission operations.

In this project, various HDF5 features are in development to address efficiency and other challenges
posed by data management and parallel I/O on Exascale architectures. The ExaHDF5 team is productizing
features and techniques that have been previously prototyped, exploring optimization strategies on upcoming
architectures, maintaining and optimizing existing HDF5 features tailored for ECP applications. Along
with supporting and optimizing I/O performance of HDF5 applications, new features in this project include
transparent data caching in the multi-level storage hierarchy, topology-aware I/O related data movement in
Exascale systems, full single-writer and multi-reader (SWMR) for workflows, asynchronous I/O, data and
metadata querying.

Many of the funded Exascale applications and co-design centers require HDF5 for their I/O, and enhancing
the HDF5 software to handle the unique challenges of Exascale architectures will play an instrumental role
in the success of the ECP. For instance, AMReX, the AMR co-design center is using HDF5 for I/O, and
all the ECP applications that are collaborating with AMReX will benefit from HDF5. Full SWMR feature
will support the needs of ExaFEL’s workflow in appending data incrementally. Virtual Object Layer (VOL)
and interoperability features with netCDF and ADIOS data opens up the rich HDF5 data management
interface to a large number of file formats. The project will be releasing these new features in HDF5 for broad
deployment on HPC systems. Focusing on the challenges of Exascale I/O, technologies will be developed
based on the massively parallel storage hierarchies that are being built into pre-Exascale systems. The
enhanced HDF5 software will achieve efficient parallel I/O on Exascale systems in ways that will impact a
large number of DOE science as well as industry applications.

Key Challenges

There are challenges in developing I/O strategies for using a hierarchy of storage devices and topology of
compute nodes efficiently, developing interoperability features with other file formats, and integrating existing
prototyped features into production releases.

Efficient use of hierarchical storage and topology. Data generation (e.g. by simulations) and consumption
(such as for analysis) in Exascale applications may span various storage and memory tiers, including near-
memory NVRAM, SSD-based burst buffers, fast disk, campaign storage, and archival storage. Effective
support for caching and prefetching data based on the needs of the application is critical for scalable
performance. In addition, support for higher bandwidth transfers and lower message latency, interconnects
in supercomputers are becoming more complex, in terms of both topology as well as routing policies. I/O
libraries need to fully account for this topology in order to maximize I/O performance, and current I/O
mechanisms fail to exploit the system topology effectively.

Interoperability with other file formats. HDF5 offers a rich data model and strong features for accessing
data, and using these capabilities to access data stored in other data formats would be a valuable productivity
boost to applications. The team is developing to add interoperability features that will enable ECP applications
to use HDF5 function calls to directly read from other file formats. Development includes functionality to
read “classic” netCDF (including PnetCDF) and ADIOS/BP files, as these formats are in active use in DOE
application communities focused on Exascale deliverables.

Solution Strategy Utilizing complex compute and storage hardware. To use multi-level storage hierarchy,
Data Elevator is being developed in this project. The Data Elevator library intercepts HDF5 file open calls
and redirects them to intermediate and faster caching storage layers, where application reads or writes data.
When updates or writes to the intermediate data is done, a server daemon of the Data Elevator moves the data
transparently to its final destination on colder storage layers, such as disk-based parallel file system, without

Exascale Computing Project (ECP) 138 ECP-RPT-ST-0001-2018

modifying the source code or placing the burden on user to move the data explicitly from the intermediate
storage layer.

In our prior work, improved communication times were achieved for a wide spectrum of data movement
patterns such as those seen in multi-physics codes, parallel I/O aggregation, and in situ analysis, and have also
improved the time to access parallel file systems []. The team is developing these topology-aware optimization
strategies as a Virtual File Driver (VFD), which can be plugged in to HDF5.

VOL Plugins

Application A Application B

Application D

netCDF-4

HDF5 Programming API

Non-persistent HDF5 Operations Persistent HDF5 Operations

Virtual Object Layer

Application C

Classic HDF5 File
Format Direct File System Remote Storage

AccessOther File Format

HDF5 Legacy or Future File
Formats

Network or
Cloud storage

POSIX or object
storage

?

…

Transient Data Structures

Figure 58: An overview of Virtual Object Layer (VOL)

Interoperability with other file formats. To open
the HDF5 API for interfacing with various file for-
mats and to provide capability of intercepting HDF5
API calls, Virtual Object Layer (VOL) feature is
being developed. the Virtual Object Layer (VOL)
adds a new abstraction layer internally to the HDF5
library and is implemented just below the public API.
The VOL intercepts all HDF5 API calls that access
objects in a file and forwards those calls to an “object
driver” plugin. A VOL plugin can store HDF5 data
model objects in a variety of ways. Figure 58 shows
a high-level view of VOL, where intercepted HDF5
API can interface with other file formats and object
storage. We will create VOL plugins to access the
netCDF and ADIOS/BP file formats, so that appli-
cations can use the HDF5 API to operate on data
stored in these formats. The interoperability func-
tions in the VOL support the pre-defined datatypes
(integers, floating-point values, strings, etc.) in these formats, and will also support compound datatypes, i.e.,
a user-defined combination of pre-defined datatypes, in netCDF and will use compound datatypes to support
ADIOS’ complex datatypes, which represent complex numbers.

Recent Progress Prototype implementation of Data Elevator. The project team has developed a prototype
implementation of write caching functionality and deployed it on the Cori system at NERSC. Using the burst
buffers on Cori, the Data Elevator achieves 4x to 6X performance improvement over a highly tuned HDF5
code in writing large data. Performance evaluation included representative I/O kernels from Chombo, which
is an AMR library supporting subsurface simulation, and from a space weather simulation that operates on
billions to trillions of particles.

Syncing VOL branch with the develop branch. VOL branch has been brought in sync with the latest
development branch. The previous VOL prototype branch was developed 3 years ago and the development
branch has evolved significantly since then.

Supporting ECP application I/O The ExaHDF5 team has been working with various applications in the
ECP portfolio. Teams we have been working have seen some performance issues, mainly because of less
optimal configurations, such as using too few file system servers (e.g. Lustre Object Storage Targets or
OSTs), producing a large number of metadata requests, etc. By simply changing these configurations, HDF5
achieved higher performance in writing files. A few minor bugs also have been identified and fixed to improve
metadata read/write performance.

Next Steps Release of VOL in HDF5. The VOL integration branch is being merged with the development
branch. Once all the testing is complete and regression testing for maintenance is in place, the VOL feature
will be released as part of the main HDF5 software.

Release of Data Elevator write caching. Testing and evaluation of Data Elevator write caching is in
progress. After rigorous testing is complete, the feature will be released as a VOL plugin. It will also be
installed on the Cori system at NERSC and any other systems that have burst buffers at the edge of compute
nodes. Development of read caching and prefetching, and use of node-local burst buffers is in progress.

Release of data write caching with Data Elevator.

Exascale Computing Project (ECP) 139 ECP-RPT-ST-0001-2018

4.4.10 ADIOS

Overview The Adaptable I/O Systems, ADIOS [165], is designed to tackle I/O and data management
challenges posed by large-scale computational science applications running on DOE computational resources.
ADIOS has dramatically improved the I/O performance of Petascale applications from a wide range of science
disciplines, thereby enabling them to accomplish their missions. The ADIOS ECP project is working on
goal of transforming the ADIOS 1.x version, which has been used successfully on Petascale resources into a
tool that will efficiently utilize the underlying Exascale hardware, and create a community I/O framework
that can allow different ECP software to be easily “plugged” into the framework. The cornerstone of this
project are to 1) efficiently address Exascale technology changes in compute, memory, and interconnect for
Exascale applications; 2) develop a production-quality data staging method to support Exascale applications
and software technologies that require flexible in situ data reduction and management capabilities; and 3)
use state of the art software engineering methodologies to make it easier for the DOE community to use,
maintain, and extend ADIOS. More precisely, our aim is to develop and deploy a sustainable and extensible
software ecosystem. To make this into an ecosystem (rather than a point solution),this effort must result in
an infrastructure than can be used effectively, customized, and shared among a variety of users, Exascale
applications, and hardware technologies. Technically, we are achieving this goal by: refactoring ADIOS with
the goal of improving modularity, flexibility, and extensibility by using C++; and extending, tuning, and
hardening core services, such as I/O and staging that supports Exascale applications, architectures, and
technologies.

Key Challenges The core challenge of ADIOS is in its name – adaptability. In order to present a uniform
user interface while also being able to harness the performance improvements available in the wide variety of
storage and interconnect capabilities, the internal structure of the ADIOS framework must address a number
of portability, functionality, and performance tuning challenges. The internals should be constructed so that
with no more than a small flag or runtime configuration a science code can move from doing I/O into a large
Lustre parallel file system (with automatic calculation of file striping and number of files per directory) to
utilizing burst buffer storage (with controls for delayed synchronization between the buffer and an archival
store).

The challenge of supporting hardware portability and runtime performance tuning also impose a third
related challenge for software engineering of the system. In order for the code to be sustainable in the long
term, while also offering guarantees of service to the end user, requires special attention to the architecture of
the code base. The consequences of trying to address these three challenges, hardware portability, runtime
performance, and sustainable engineering, have driven our approach and deliverable schedule for ADIOS in
ECP.

Solution Strategy The ADIOS effort has two primary thrusts:

1. Scalable I/O: ADIOS has a data format designed for large scale parallel I/O and has data transport
solutions to write/read data from/to the storage system(s) efficiently.

2. Scalable data staging support: ADIOS includes data transport solutions to work on data in transit,
that is, to move data memory-to-memory, from one application stage to another without using file
system I/O.

The challenges of portability and performance apply for both of these thrusts; to a certain extent, the
third challenge around software engineering emerges from the need to support these two very different
categories under a single user interface. Capitalizing on the experiences and performance expertise from our
initial ADIOS platform, the ECP project wraps and extends this functionality to make it more sustainable,
maintainable, and hopefully also more approachable for a wide community of users and developers. The
project approach focuses on doing deep dives with end scientist users and developers in order to make sure
that the computer science development process leads to specific, verifiable results that impact the customers.

Recent Progress In the first year of this project, the ADIOS team has designed the new version of
Application Programming Interface that unifies staging I/O and file I/O [166], and designed and created the

Exascale Computing Project (ECP) 140 ECP-RPT-ST-0001-2018

new object-oriented code framework [167] with basic functionalities, including writing and reading files in
two different file formats (ADIOS BP format and HDF5 format). The new framework focuses on sustainable
development and code reusability, which will help in the long term to add more and more new features
to ADIOS. In the decade-long history of ADIOS many research artifacts has been incorporated and this
tradition is expected to continue. The team has also designed the new scalable staging transport learning
from the many lessons from using ADIOS for data staging and code coupling by applications in the past.
As can be seen in Figure 59, this past experience with methods and deep science engagements has led to
demonstrations at Titan scale.

Figure 59: An example of using ADIOS to support ECP science. This sketch
represents the demonstration at the February 2018 ECP Meeting, which featured
WDM Fusion, CODAR, ADIOS, and other joint ECP activities. Note that all of
the green arrows in the figure represent data communication or storage handled
by the ADIOS infrastructure.

The new design focuses on stability and scalability so that applications can rely on it in daily production
runs just as they have relied on the high performance file I/O of ADIOS. The new code base is governed with
state-of-the art software development practices, including GitHub workflow of Pull-Requests with reviews,
continuous integration that enforces well-tested changes to the code only, and nightly builds to catch errors
on various combinations of architecture and software stack as soon as possible. The team has access to and
the code is continuously tested on DOE machines (Titan, Summit-dev, Cori and Theta).

Next Steps In the second year, the team aims to transfer most functionality from the ADIOS 1.x software
into the new code base. The goal is to reach parity in performance and functionality while succeeding in
stability and code quality. Static and dynamic analysis will be integrated to the GitHub workflow to catch
errors before they cause trouble. Code coverage tools will help with increasing code quality. Large effort is
going into the development of the scalable staging transport and will start using it in in situ analysis, code
coupling and in situ visualization in ECP applications to explore and evaluate its usability, scalability and
stability.

Exascale Computing Project (ECP) 141 ECP-RPT-ST-0001-2018

4.4.11 DataLib

Overview Data Libraries and Services Enabling Exascale Science (DataLib). The DataLib project encom-
passes multiple related activities in user-level storage and I/O support for ECP codes on upcoming DOE
platforms, providing a number of options for effectively storing and retrieving data and tools for assessing I/O
behavior and performance. The ROMIO and Parallel netCDF (PnetCDF) activities focus on existing
standards-based interfaces in broad use, assisting in performance debugging on new platforms and augmenting
existing implementations to support new storage models (e.g., “burst buffers”). In addition to being used
directly by applications, ROMIO and PnetCDF are also indirectly used in HDF5 and netCDF-4. Our work is
ensuring that these libraries are ready for upcoming platforms and effective for their users (and ready as
alternatives if other libraries fall short). The Darshan I/O characterization toolset is an instrumentation tool
deployed at facilities to capture information on I/O behavior of applications running at scale on production
systems. It has become popular at many DOE facilities and is usually “on by default”. Darshan data
dramatically accelerates root cause analysis of performance problems for applications and can also (in some
cases) assist in correctness debugging. Our work in this project focuses on extending Darshan to new interfaces
and ensuring readiness on upcoming platforms. The Mochi and Mercury software tools are building blocks
for user-level distributed HPC services. They address issues of performance, programmability, and portability
in this key facet of data service development. Mercury is being used by Intel in the development of their
DAOS storage service and in other data service activities, while within ECP the HXHIM and UnifyCR
projects also have plans to leverage these tools. In addition to working with these stakeholders and ensuring
performance and correctness on upcoming platforms, we are also working with ECP application teams to
customize data services for their needs (e.g., memoization, ML model management during learning).

Key Challenges Each of these subprojects has its own set of challenges. Libraries such as ROMIO and
PnetCDF have numerous users from over a decade of production use, yet significant changes are needed to
address the scale, heterogeneity, and latency requirements of upcoming applications. New algorithms and
methods of storing data are required. For Darshan, the challenge is to operate in a transparent manner in
the face of continuing change in build environments, to grow in functionality to cover new interfaces while
remaining “lean” from a resource utilization perspective, and to interoperate with other tools that use similar
methods to hook into applications. Mochi and Mercury are new tools, so the challenge in the context of these
tools is to find users, adapt and improve to better support those users, and gain a foothold in the science
community.

Solution Strategy Transparently refactoring application I/O. Collective I/O is an important optimization
in codes where phases of I/O are naturally identifiable: individual I/O operations from application processes
are transparently refactored (i.e., without application code changes) to achieve the same goals at lower cost.
We will improve collective I/O techniques for Exascale through tighter integration with I/O forwarding layers,
topology awareness, and employing collective approaches in higher-level libraries where additional information
is available.

Intermediate storage and alternative data organizations. Nonvolatile memory (NVM) or solid-state disk
(SSD) integrated into platforms provides a pool of fast storage where data can be stored temporarily or
staged for writing to an external store (e.g., parallel file system). Recognizing that this data is transient,
alternative organizations (e.g., provide higher performance.

Capturing and reconstructing I/O behavior. Darshan characterizes fully the POSIX and MPI-IO layers
and captures some statistics for HDF5 and PnetCDF. We will improve our coverage of HDF5, PnetCDF, and
ADIOS to better enable understanding of these codes. We will reach out to other library teams to consider
characterization of them as well (e.g., SCR, FTI, PIO, SILO).

Mercury porting and support for relevant platforms. Mercury is an RPC/bulk data communication library
for use in HPC services and co-developed by the HDF Group. We will work with system vendors to enable
efficient Mercury communication on the platforms of interest (e.g., UCX/PAMI on IBM).

Data service co-design with application teams. A number of candidate ECP applications have data service
needs (e.g., material property databases, producer-consumer data pipelines, multi-scale/physics simulation
coupling, multi-modal data organization and indexing). We will identify application teams with data service
requirements that are particularly ill-suited to solution by vendor offerings (e.g., parallel file systems, standard

Exascale Computing Project (ECP) 142 ECP-RPT-ST-0001-2018

burst buffers, cloud-based databases) and co-design, develop, and evolve specialized services based on our
components to meet their specific requirements for ECP.

Recent Progress Darshan. We added Python bindings to the log parsing library to facilitate analysis
and created a module for Autoperf (https://www.alcf.anl.gov/user-guides/automatic-performance-collection-
autoperf), used in ALCF for performance counter and MPI information. An initial version of HXHIM module
for Darshan has been completed (towards STDM12-8). We are iterating with HXHIM development team on
what more interesting statistics could be collected on the client side (where Darshan runs). This interaction
has also accelerated work with Thallium by the HXHIM team, a layer for enabling use of Mercury. We
released Darshan 3.1.6 with bug fixes for specific application problems.

Mochi and Mercury. Nightly tests are now running on Aires, InfiniBand, and OmniPath networks
(STDM12-7). See below for more information on STDM12-7.

PnetCDF. We are revising APIs to reduce memory footprint (towards STDM12-10), migrating PnetCDF
wiki pages to GitHub (https://parallel-netcdf.GitHubio), and working on driver to enable netCDF-4 access
from PnetCDF (towards SDTM12-11). We are also adjusting the API in PnetCDF to better support I/O
patterns with very large numbers of small requests, something we are seeing in E3SM workloads (via their
PIO library layer). Finally, we are evaluating burst buffer features of PnetCDF on Theta, using local SSDs.

Figure 60 illustrates a refactoring of the PnetCDF library to include a dispatch layer. The dispatch layer
provides a mechanism for implementing multiple back-ends under the standard API. This functionality is
being used to enable writing in a log format for intermediate data and access of data in the netCDF-4 format
(stored in HDF5 files).

ROMIO. We implemented a bug fix for single MPI-IO requests of larger than 4GiB on some platforms,
added a check for monotonicity of offsets in types, an MPI requirement, and tested logFS backend on Cori.
We have begun integration of pipelined I/O functionality into ROMIO (STDM12-9), specifically into the
Lustre driver. We are also debugging the LogFS ROMIO back-end.

ParSplice. We are pushing KV updates back into Mochi repository, refining Spack build process, and
working through bugs with ParSplice use of Mochi components in newest revisions.

1 Exascale Computing Project

Data Libraries and Services Enabling Exascale Science
PI: Rob Ross (ANL), with LANL and Northwestern

This project builds upon the highly successful ROMIO,
Parallel netCDF, Darshan, and Mochi open source software
projects to evolve and deliver new data management and I/O
capabilities for exascale applications.

§ HPC applications leverage specialized software for data

management and I/O

§ Older components: ROMIO, Parallel netCDF

§ Newer ones: Mochi (e.g., Mercury)

§ This project will:

§ Port these components to ECP platforms

§ Work with ECP software teams using or adopting these packages

• Expand Darshan capabilities to capture information on use of non-POSIX

data services

§ Collaborate with ECP application teams to customize data services

• Expand ROMIO and PnetCDF capabilities are relate to use of in-system

storage tiers (burst buffers)

DATA LIBRARIES AND SERVICES ENABLING EXASCALE SCIENCE

3.2.2. Parallel netCDF

dispatch layer

H
D

F5
 fu

nc
tio

ns

AD
IO

S
fu

nc
tio

ns

.bp
files

.h5
files

.nc
files

Pn
et

C
D

F
fu

nc
tio

ns

PnetCDF APIs

Lo
g-

ba
se

d
I/O

 fu
nc

tio
ns

.bb
files

parallel file system burst buffer

D
at

a
la

yo
ut

C

on
ve

rs
io

n

parallel
applications

data analysis/
visualization

Figure 3: The overview of PnetCDF dispatch
architecture. The PnetCDF API can be used by
applications to read files in netCDF, HDF5, or
ADIOS BP formats, or to utilize optimized in-
termediate data layouts.

We propose the following three tasks for PnetCDF.

Interoperability with HDF5 and ADIOS. We will enable
the interoperability of PnetCDF with HDF5 and ADIOS li-
braries by allowing users to read files in HDF5 and BP for-
mats through the PnetCDF API. PnetCDF will adopt an ab-
stract layer that provides a uniform API to the users and, at the
backend, dispatches HDF5 or ADIOS library calls when ac-
cessing files of those types. In our design, we will identify the
native format of a file by checking the file’s “magic number”,
the file identifier, and use that to select the right dispatcher.
Figure 3 illustrates the software architecture of the proposed
dispatch system.

Facilitate burst buffer use. We propose to develop a new
dispatcher in PnetCDF to perform the following functions: to
store data in the burst buffer, maintain a log-structured lay-
out, manage the logging metadata, and convert/combine data
into the layout conforming with the desired file format (e.g.,
netCDF) when later spooling off the data to a parallel file sys-
tem. Burst buffers are often proposed as a vehicle for in situ
or staging operations, such as data analysis and visualization.
Such operations often rely of third party libraries that require
the input files in a specific format. Thus, data in a log-based
layout will need to be converted into the format desired by these operations. This will further address a
fundamental limitation (and lesson learned) of previous work in the use of log-based layouts [9] in which
reading back large-scale datasets required reading the log metadata which could grow larger than the mem-
ory available on any single node in the system.

We will develop a data layout conversion component to serve this purpose. In our design, the high-level
metadata of individual requests, such as variable IDs, subarray starting indices, requested sizes along each
dimension, etc., will be collected as part of the log metadata. Each request will be stored as a single data
block. Successive requests are appended in a linear fashion. In our design, we will use two process-to-
log mapping strategies: one log per process and one log per node. The former simplifies the log metadata
management, but can potentially result in a large number of logs for large-scale ECP applications. The latter
strategy alleviates the problem by letting all processes running on the same compute node write to the same
log. The liblogfs library will be responsible for mapping logs to underlying local storage.

During the data layout conversion, the log metadata will be used to generate MPI file views, one for each
intermediate log. For instance, each MPI process reads a subset of data blocks together with their associated
log metadata and uses the array starting indices and request sizes to construct a subarray derived datatype
through a call to MPI Type create subarray. A list of such subarray data types are later concatenated
into a single type through a call to MPI Type create struct. The integrated datatype will be used to
define the process’s file view. The file views are the layout mapping mechanism to retrieve and reorganize
data into the desired format. Extensive use of MPI derived datatypes and file views is a cornerstone of
PnetCDF I/O optimizations. We will continue the same practice for developing the proposed dispatching
system.

10

One aspect of this project is the

refactoring of PnetCDF to enable

multiple back-end formats and targets.

(W. Liao, NU, lead)

Figure 60: The new PnetCDF dispatch layer provides flexibility to target
different back-end formats and devices under the PnetCDF API used by many
existing applications.

Next Steps Next we will demonstrate a non-POSIX I/O characterization module for representative ECP
I/O library (STDM12-8), demonstrate a PnetCDF prototype burst buffer backend on relevant ECP platform
(STDM12-10), and release ROMIO including a pipelined I/O capability (STDM12-9).

Exascale Computing Project (ECP) 143 ECP-RPT-ST-0001-2018

4.4.12 ZFP: Compressed Floating-Point Arrays

Overview One of the primary challenges for Exascale computing is overcoming the performance cost of
data movement. Through simulation, observation, and experiments, far more data is being generated than
can reasonably be stored to disk and later analyzed without any form of data reduction. Moreover, with
deepening memory hierarchies and dwindling per-core memory bandwidth due to increasing parallelism, even
on-node data motion between RAM and registers makes for a significant performance bottleneck and primary
source of power consumption.

zfp is a floating-point array primitive that mitigates this problem using very high-speed, lossy (but
optionally error-bounded) compression to significantly reduce data volumes. zfp reduces I/O time and
off-line storage requirements by 1–2 orders of magnitude depending on accuracy requirements, as dictated
by user-set error tolerances. Unique among data compressors, zfp also supports constant-time read/write
random access to individual array elements from compressed storage. zfp’s compressed arrays can often
replace conventional arrays in existing applications with minimal code changes, allowing for instance the user
to store tables of floating-point data in compressed form that otherwise would not fit in memory, either using
a desired memory footprint or a prescribed level of accuracy. When used in numerical computations, zfp
arrays provide a fine-grained knob on precision while achieving accuracy comparable to IEEE floating point
at half the storage, reducing both memory usage and bandwidth.

This project is extending zfp to make it more readily usable in an Exascale computing setting, by
parallelizing it on both the CPU and GPU while ensuring thread safety; by providing bindings for several
programming languages (C, C++, Fortran, Python); by adding new functionality, e.g., for unstructured data
and spatially adaptive compressed arrays; by hardening the software and adopting best practices for software
development; and by integrating zfp with a variety of ECP applications, I/O libraries, and visualization and
data analysis tools.

Key Challenges There are several challenges to overcome on this project with respect to implementing
compressed floating-point arrays:

• Data dependencies. Compression by its very nature removes redundancies, often by deriving
information from what has already been (de)compressed and learned about the data. Such data
dependencies can usually be resolved only by traversing the data in sequence, thus complicating random
access and parallelism.

• Random access. For inline compression, on-demand random access to localized pieces of data is
essential. However, compression usually represents large fixed-length records using variable-length
storage, which complicates random access and indexing.

• Parallelism. Manycore architectures allow for massively concurrent execution over millions or billions
of array elements. Yet compression is usually a process of reducing such multidimensional arrays to a
single-dimensional sequence of bits, which requires considerable coordination among parallel threads of
execution.

• Unstructured data. Unstructured data, such as independent particles and arbitrarily connected
nodes in a mesh, has no natural ordering, repeated structure, or regular geometry that can be exploited
for compression.

• Performance. For inline compression to be useful, both compression and decompression have to be
extremely fast (simple), yet effective enough to warrant compression. Moreover, the complexities of
compression must be hidden from the user to promote adoption, while allowing sufficient flexibility to
support essentially arbitrary data access patterns.

These challenges often suggest conflicting solutions and are further complicated by the extreme demands of
Exascale computing applications.

Solution Strategy zfp is unique in supporting read and write random access to multidimensional data,
and was designed from the outset to address some of the above challenges. The following strategies are
employed on this project to overcome the remaining challenges:

Exascale Computing Project (ECP) 144 ECP-RPT-ST-0001-2018

• Partitioning. d-dimensional arrays are partitioned into small, independent blocks of 4d scalars each.
This enables both fine-grained random access and a large degree of data parallelism.

• Fixed-size storage. Instead of storing fixed-precision values using variable-size storage, zfp uses
fixed-size storage to represent values at the greatest precision afforded by a limited bit budget.

• Adaptive storage. For applications that demand error tolerances, this project is developing adaptive
representations that allocate bits to where they are most needed, which involves efficient management
of variable-length records that might expand and shrink in size over time.

• Parallelism. OpenMP and CUDA implementations of zfp are being developed that primarily exploit
fine-grained data parallelism, but which also take advantage of task parallelism.

• Preconditioning. The irregularity and unpredictability of unstructured data is improved using
preconditioners that “massage” the data to make it more amenable to compression by zfp. Strategies
include sorting, binning, structure inference, transposition, pre-transforms like wavelets, etc.

• Abstraction. Concrete details about compression, caching, parallelism, thread safety, etc., are
abstracted away from the user by providing high-level primitives that make zfp arrays appear like
uncompressed arrays, in part via C++ operator overloading. We are designing classes and concepts
commonly available for uncompressed arrays, such as proxy references and pointers into compressed
storage that act like their uncompressed counterparts; views into and slices of arrays; and iterators
compatible with STL algorithms. Such primitives make it easier to write generic code for which zfp
arrays may easily be substituted for uncompressed arrays.

Recent Progress This project has made progress on several fronts over the past year to make the zfp
software [168] more Exascale ready and capable. Improved software development practices have been adopted,
such as continuous integration, unit testing, extensive documentation [169], and portable build processes
based on CMake and SPACK. A novel C equivalent of name spaces has been developed to allow linking
to multiple versions of zfp in the same library or executable to enable access to persistent files written
using an evolving zfp CODEC. zfp compressed arrays can now be accessed using primitives with semantics
equivalent to those commonly available for uncompressed scalar types and containers, such as proxy references
and pointers, iterators, and flat and nested views and slices. The work on views has also laid the ground
for enabling thread-safe access to zfp compressed arrays, e.g., by enabling shared, read-only access among
threads, in addition to partitioning into independent sub-arrays for read-write multithreaded access. zfp has
further been parallelized to support both OpenMP and CUDA execution, yielding throughput as high as 20
GB/s using 32 threads.

Finally, significant effort has been made to deploy zfp to ECP tools and applications. For instance, zfp
compression is available in the ADIOS and HDF5 I/O libraries and has been specialized for the Cinema
database format for in-situ visualization. A compressed format is being developed for the CEED high-order
finite-element co-design center. Compression studies have been performed for the QMCPACK, ExaSMR, and
ExaSky ECP applications, in which zfp compressed arrays are being considered.

The results of these R&D efforts have been documented through publications [170, 171], and significant
efforts have been made to reach out to customers and the HPC community at large through one-on-one
interactions and tutorials, both at ECP meetings and conferences [172, 173, 174].

Next Steps Efforts are underway to provide C, Python, and
Fortran bindings for zfp arrays to facilitate integration with
applications not written in C++. Additionally, new capabilities
are being added to the main compression CODEC to support
4D and higher-dimensional arrays; missing/undefined array
values and special values like NaNs and infinities; and lossless
compression. Our CUDA implementation will serve as the
basis for a new GPU-based compressed array primitive for
VTK-m. Longer-term efforts include strategies for coping with
unstructured data and spatially adaptive compressed arrays. Figure 61: 240:1 zfp compressed density field.

Exascale Computing Project (ECP) 145 ECP-RPT-ST-0001-2018

4.4.13 ALPINE

Overview ECP ALPINE will deliver in situ visualization and analysis infrastructure to ECP Applications.
ALPINE developers come from the ParaView [175, 176] and VisIt [177] teams and ALPINE solutions will
deliver in situ functionality in those tools, as well as ASCENT [178], a new in situ solution that focuses on
flyweight processing. The ALPINE team focuses on four major activities:

1. Deliver Exascale visualization and analysis algorithms that will be critical for ECP Applications as the
dominant analysis paradigm shifts from post hoc (post-processing) to in situ (processing data in a code
as it is generated).

2. Deliver an Exascale-capable infrastructure for the development of in situ algorithms and deployment
into existing applications, libraries, and tools.

3. Engage with ECP Applications to integrate our algorithms and infrastructure into their software.

4. Engage with ECP Software Technologies to integrate their Exascale software into our infrastructure.

Key Challenges Many high performance simulation codes are using post hoc processing, meaning they
write data to disk and then visualize and analyze it afterwards. Given Exascale I/O constraints, in situ
processing will be necessary. In situ data analysis and visualization selects, analyzes, reduces, and generates
extracts from scientific simulation results during the simulation runs to overcome bandwidth and storage
bottlenecks associated with writing out full simulation results to disk.

The ALPINE team is addressing two problems related to Exascale processing — (1) delivering infrastructure
and (2) delivering in situ-appropriate algorithms. For delivering infrastructure, the challenge is that our
existing tools are not ready for Exascale In particular, we are concerned about achieving performance within
simulation codes’ time budgets, supporting many-core architectures, scaling to massive concurrency, and
leveraging deep memory hierarchies. For in situ-appropriate algorithms, the challenge is that our stakeholders
need to be able to apply in situ processing effectively without a human being in the loop. This means that
we must have approaches to automate saving either the correct visualizations or the correct data extracts.

Solution Strategy A major strategy for our team is to leverage existing, successful software, ParaView and
VisIt, including their recent developed in situ libraries Catalyst [155] and Libsim [179], and then to integrate
and augment them with ALPINE capabilities to address the challenges of Exascale. Both software projects
represent long-term DOE investments, and they are the two dominant software packages for large-scale
visualization and analysis within the DOE Office of Science (SC) and the DOE National Nuclear Security
Agency (NNSA). These two products will provide significant coverage of ECP Applications, and we can
leverage their existing engagements to deliver ALPINE’s algorithms and infrastructure. We are also developing
another in situ library, ASCENT, with also utilizes this code repository; ASCENT is a “flyweight” solution,
meaning that it is focused on a streamlined API, minimal memory footprint, and small binary size.

In terms of specifics, our solution strategy is two-fold, in response to our two major challenges (infrastructure
and algorithms).

For infrastructure, we have developed a layer on top of the VTK-m library for ALPINE algorithms.
This layer is where all ALPINE algorithms will be implemented, and it is deployed in ParaView, VisIt, and
ASCENT. This means that all development effort by ALPINE will be available in all of our tools. Further,
by leveraging VTK-m, we will be addressing issues with many-core architectures. Figure 62 illustrates our
software strategy.

For automating in situ, we are pursuing four different algorithms:

• Feature-based analysis with moments to detect rotation-invariant patterns. These patterns can then
be used either to direct which features should be visualized or to direct which extracts should be saved.

• Lagrangian analysis of vector flow allows more efficient and complete analysis and tracking of flow. It
is a method for saving vector field data with more higher accuracy and less storage than the traditional
approach.

• Topological analysis can be used to detect features in the data and steer visualizations. For example,
contour trees can identify the most significant isosurfaces in complex simulations and then the resulting
visualizations can use these isosurfaces.

Exascale Computing Project (ECP) 146 ECP-RPT-ST-0001-2018

Figure 62: ALPINE’s strategy for delivering and developing software. We
are making use of existing software (ParaView, VisIt), but making sure all new
development is shared in all of our tools. The dotted lines represent future work,
specifically that the ASCENT API will work with ParaView and VisIt.

• Importance sampling can be used to guide visualizations and extracts to the most important parts
of the simulation. Examples ranges from clustering similar data points within a region to identifying
important time slices to save.

Recent Progress Again, we organize our recent progress around infrastructure and algorithms.
On the infrastructure side, we have completed the layer on top of VTK-m for ALPINE algorithms

(Milestone STDA04-2, https://gitlab.kitware.com/vtk/vtk-m). We have stood up ASCENT, our flyweight in
situ library, including defining its API (STDA04-1), making an initial release (STDA04-11), and making a
production release (STDA04-30, https://github.com/Alpine-DAV/ascent).

On the algorithms side, we have been researching and developing our four algorithms (STDA04-5). In all
cases, the progress is a combination of evaluating best approaches, and developing VTK-m based solutions
that can be deployed in our infrastructures. Our topological analysis work is likely the furthest along. With
this work, there is now a VTK-m implementation, although it needs additional effort for distributed memory
support. The algorithm was applied to a WarpX simulation (STDA04-15), and used to automatically select
isovalues in situ. Figure 63 compares the traditional approach with our enhanced version.

Figure 63: In situ visualizations taken from WarpX using VisIt. At left, equally
spaced isovalues in an ion accelerator simulation. At right, our method chooses
isovalues using topological analysis to more fully represent complex behavior in
the data.

Next Steps

• For algorithm development, our next major activity is to develop scalable in situ versions of our
algorithms (STDA04-31).

• For infrastructure, our next major activities are to integrate our algorithms into our infrastructures
(STDA04-32) and deliver a release (STDA04-33).

• For ECP Application engagement, our strategy is to engage with Co-Design centers and connect with
ECP applications through the centers. We have been partnering with AMReX and are integrating our
in situ infrastructures into this package. We also have been engaging with the simulation teams that
use AMReX.

Exascale Computing Project (ECP) 147 ECP-RPT-ST-0001-2018

4.4.14 ECP/VTK-m

Overview The ECP/VTK-m project is providing the core capabilities to perform scientific visualization on
Exascale architectures. The ECP/VTK-m project fills the critical feature gap of performing visualization and
analysis on processors like graphics-based processors and many integrated core. The results of this project
will be delivered in tools like ParaView, VisIt, and Ascent as well as in stand-alone form. Moreover, these
projects are depending on this ECP effort to be able to make effective use of ECP architectures.

One of the biggest recent changes in high-performance computing is the increasing use of accelerators.
Accelerators contain processing cores that independently are inferior to a core in a typical CPU, but these
cores are replicated and grouped such that their aggregate execution provides a very high computation rate
at a much lower power.

Current and future CPU processors also require much more explicit parallelism. Each successive version
of the hardware packs more cores into each processor, and technologies like hyper threading and vector
operations require even more parallel processing to leverage each core’s full potential.

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VTK-m
supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme
scale computing by providing abstract models for data and execution that can be applied to a variety of
algorithms across many different processor architectures.

The ECP/VTK-m project is building up the VTK-m codebase with the necessary visualization algorithm
implementations that run across the varied hardware platforms to be leveraged at the Exascale. We will
be working with other ECP projects, such as ALPINE, to integrate the new VTK-m code into production
software to enable visualization on our HPC systems.

Key Challenges The scientific visualization research community has been building scalable HPC algorithms
for over 15 years, and today there are multiple production tools that provide excellent scalability. However,
our current visualization tools are based on a message-passing programming model. More to the point, they
rely on a coarse decomposition with ghost regions to isolate parallel execution [180, 181]. However, this
decomposition works best when each processing element has on the order of a hundred thousand to a million
data cells [182] and is known to break down as we approach the level of concurrency needed on modern
accelerators [183, 184].

DOE has made significant investments in HPC visualization capabilities. For us to feasibly update this
software for the upcoming Exascale machines, we need to be selective on what needs to be updated, and we
need to maximize the code we can continue to use. Regardless, there is a significant amount of software to
be engineered and implemented, so we need to extend our development resources by simplifying algorithm
implementation and providing performance portability across current and future devices.

Solution Strategy The ECP/VTK-m project leverages VTK-m [156] to overcome these key challenges.
VTK-m has a software framework that provides the following critical features.

1. Visualization building blocks: VTK-m contains the common data structures and operations required
for scientific visualization. This base framework simplifies the development of visualization algorithms
[185].

2. Device portability: VTK-m uses the notion of an abstract device adapter, which allows algorithms
written once in VTK-m to run well on many computing architectures. The device adapter is constructed
from a small but versatile set of data parallel primitives, which can be optimized for each platform
[186]. It has been shown that this approach not only simplifies parallel implementations, but also allows
them to work well across many platforms [187, 188, 189].

3. Flexible integration: VTK-m is designed to integrate well with other software. This is achieved with
flexible data models to capture the structure of applications’ data [190] and array wrappers that can
adapt to target memory layouts [191].

Even with these features provided by VTK-m, we have a lot of work ahead of us to be ready for Exascale.
Our approach is to incrementally add features to VTK-m and expose them in tools like ParaView and VisIt.

Exascale Computing Project (ECP) 148 ECP-RPT-ST-0001-2018

Figure 64: Examples of recent progress in VTK-m include (from left to right)
multiblock data structures, gradient estimation, and mapping of fields to colors.

Recent Progress The VTK-m project is organized into many implementation activities. The following
features have been completed in the past 12 months.

• Key Reduce Worklet: This adds a basic building block to VTK-m that is very useful in constructing
algorithms that manipulate or generate topology [192].

• Spatial Division: Introductory algorithms to divide space based on the distribution of geometry
within it. This is an important step in building spatial lookup structures.

• Basic Particle Advection: Particle advection traces the path of particles in a vector field. This
tracing is fundamental for many flow visualization techniques. Our initial implementation works on
simple structures

• Surface Normals: Normals, unit vectors that point perpendicular to a surface, are important to
provide shading of 3D surfaces while rendering. These often need to be derived from the geometry itself.

• Multiblock Data: Treat multiple blocks of data, such as those depicted in Figure 64 at left, as
first-class data sets. Direct support of multiblock data not only provides programming convenience but
also allows us to improve scheduling tasks for smaller groups of data.

• Gradients: Gradients, depicted in Figure 64 at center, are an important metric of fields and must
often be derived using topological data. Gradients are also fundamental in finding important vector
field qualities like divergence, vorticity, and q-criterion.

• Field to Colors: Pseudocoloring, demonstrated in Figure 64 at right, is a fundamental feature of
scientific visualization, and it depends on a good mechanism of converting field data to colors.

• VTK-m 1.1 Release: VTK-m 1.1 was released in December 2017.

Next Steps Our next efforts include:

• External Surface: Extracting the external faces of solid geometry is important for efficient solid
rendering.

• Location Structures: Many scientific visualization algorithms require finding points or cells based
on a world location.

• Dynamic Types: The initial implementation of VTK-m used templating to adjust to different
data structures. However, when data types are not known at compile time, which is common in
applications like ParaView and VisIt, templating for all possible combinations becomes infeasible.
Provide mechanisms to enable runtime polymorphism.

• OpenMP: Our current multicore implementation uses TBB [193] for its multicore support. However,
much of the code we wish to integrate with uses OpenMP [194], and the two threading implementations
can conflict with each other. Thus, add a device adapter to VTK-m that uses OpenMP so this conflict
will not happen.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-NA0003525. SAND 2018-4009 R

Exascale Computing Project (ECP) 149 ECP-RPT-ST-0001-2018

4.5 SW ECOSYSTEM & DELIVERY

This section present projects in SW Ecosystem & Delivery.

Exascale Computing Project (ECP) 150 ECP-RPT-ST-0001-2018

4.5.1 Software Development Kits

Overview The ST Software Development Kit (SDK) project supports a set of activities aimed at

• establishing Community Policies aimed at increasing the interoperability between and sustainability of
ST software packages, using the xSDK community package [195] and installation [196] policies as a
model (reference to xSDK section?).

• coordinating the delivery of a comprehensive and coherent set of software tools to all interested
stakeholders on behalf of ECP ST. This includes ECP applications and the broader open source
community.

SDK is needed within ECP because it will make it simpler for ECP applications to access required software
dependencies on ECP target platforms and drastically lower the cost of exploring the use of additional ECP
ST software that may be of benefit. In addition, the SDK effort will decrease the ECP software support
burden at the major computing facilities by ensuring the general compatibility of ST packages within a
single software environment, providing tool support for the installation of ST packages on facility machines,
communicating common requirements for ST software and facilitating the set up of CI testing on facility
platforms. This project will work closely with the HI 2.4.4 Deployment of Software at the Facilities project.

Key Challenges ST software packages have been developed in a variety of very different cultures and are
at significantly different levels of software engineering maturity and sophistication. The experience of some of
the SDK staff during the formation of the xSDK showed that in this situation, it is challenging to establish
common terminology and effective communication, and these are prerequisites to community policies and a
robust software release.

Deciding exactly how to deploy the SDKs at the facilities is itself a challenge. ECP applications will
use different combinations of ST software in different configurations. For example, applications will want
mathematical libraries capabilities from the xSDK build on top of both MPICH and OpenMPI, and will
want different configurations of those mathematical libraries.

Solution Strategy The SDK solution strategy involves pursuing interoperability and sustainability goals
by grouping ST software projects into logical collections whose members will benefit from a common set
of community policies as well as increased communication between members to standardize approaches
where sensible and establish better software practices. The SDK effort will also facilitate the use of common
infrastructure, such as CI testing at the major computing facilities and the Spack [4] package manager.

SDK release and delivery goals will also benefit from common package manager and testing infrastructure.
In addition to delivery through Spack, the SDK will also explore the option of binary delivery, possibly
through OpenHPC.

Recognizing the different release readiness and broader maturity differences between different ECP ST
products, the early release strategy is to include only those products ready for a joint release in the initial SDK
release, but to also continue to work with other products in preparing for subsequent release opportunities.

Recent Progress The SDK team decided to use a horizontal as opposed to vertical approach for forming
SDKs. A horizontal approach emphasizes the grouping of software according to function and purpose, such
as MPI implementations, compiler frameworks, performance analysis, or mathematical libraries. A vertical
approach would have grouped ST software products based on products that are built in a stack for end users.

Figure 65 illustrates the horizontal relationship between ST products in an SDK. The packages shown in
green are all members of the xSDK, and are all mathematical libraries software. Software shown in black are
not xSDK member packages. However, OpenMPI is an ECP ST software package. Although OpenMPI is
commonly used with xSDK member packages (a vertical relationship), it is not a mathematical library (a
horizontal relationship), and is therefore not part of the xSDK.

Some initial SDK groupings have been proposed based on the horizontal grouping approach. Lower level
SDKs from the Programming Models and Runtimes area are available in a container environment for the
purposes of supporting higher-level SDKs and testing SDK infrastructure.

Exascale Computing Project (ECP) 151 ECP-RPT-ST-0001-2018

Figure 65: The above diagram shows a snippet of the Spack dependency tree
including six xSDK member packages. While multiple xSDK member packages
depend on OpenMPI, which is an ECP ST software product, OpenMPI is not
part of the xSDK

Next Steps Current and near-term efforts include:

• defining additional ST SDKs based on horizontal grouping principles.

• beginning regular requirements discussions with computing facilities.

• identifying resources and a plan for assisting ECP ST packages with Spack package creation (over 50%
already have a Spack package).

• beginning community policy discussions within SDK package teams.

• choosing a target set of ST products for inclusion in the FY19 Q1 release.

Exascale Computing Project (ECP) 152 ECP-RPT-ST-0001-2018

4.5.2 LANL ATDM Software Ecosystem & Delivery Projects - Resilience Subproject

Overview The resilience subproject has a goal of providing tools and solutions for users and administrators
of the Exascale machines to deal with expected unreliable operations. Due to the extreme scale and bleeding-
edge components necessary to meet the needs of the ECP project, it is expected that the applications will need
to deal with application / job interrupts at a rate higher than users are used to on conventional extreme-scale
systems of today. This also means that datacenter operations will be affected and modeling tools needs to be
provided to monitor and be prepared for this situation.

In general, this subproject approaches this through a combination of data collection of today’s extreme-scale
systems (monitoring), data analytics, machine learning, model building, and fault injection into applications
at scale.

Key Challenges The key challenges in this area are that it is difficult to acquire data on contemporary
systems for a number of reasons such as NDA, security, and jitter / noise. We expect future systems will be
complex enough that it is hard to estimate the parameters well and it must be understood that the modeling
can only be as good as the input to the models. Care must be taken to get good input data from the vendors
and the ECP project should place emphasis on getting quality monitoring data from around DOE datacenters
that can seed modeling efforts on contemporary systems.

Reliability is a topic area which is sensitive not only amongst the government but also the vendors
providing solutions and, as such, thought should be put into how we are to assemble information and
disseminate for maximal progress of the project while also protecting the participants.

Solution Strategy This subproject’s solution leverages data collection and analytics to do what is termed
data-driven datacenter design. That is, using data from supercomputer field data (real and modeled from
prospective / hypothetical machines) to design better datacenters and supercomputers themselves to better fit
our users’ needs. Further, we provide software evaluation tools to emulate soft faults so users can inject faults
into their code and empirically evaluate their applications’ resiliency and vulnerability to corruption. In this
way, they can develop mitigation strategies and evaluate the efficacy of those approaches. It is important to
understand, however, that these approaches are predicated on good input data that these faults are reasonable
given what is expected for target Exascale computer platforms. The tools provided by this subproject can
create nearly any fault model, but those faults need to be configured and driven by some information and
while we can provide some initial suggestions it is theoretically possible that those would be incorrect.

Recent Progress The subproject recently completed a milestone where two supercomputer resiliency
models were created. One is considerably more complex than the other but includes parameters which we
found to be hard to measure on contemporary systems. It provides an example of features which we find
desirable measurement points on future systems. The simplified model we provided we used on the Trinity
supercomputer at LANL, the largest system at LANL. Due to the nature of the work performed on the
system and the NDA-nature of the results of the analysis, we were unable to share publicly the results but
did share the results in meetings with several laboratories and other government agencies, demonstrating
the model and showed that it closely matches certain parameters from RFP (NDA) documents and neutron
beam studies that have been published by the team.

Next Steps The FSEFI[197, 198] fault injector continues development toward a late year milestone of
parallel fault injection demonstration. Additionally, there is an upcoming milestone for machine learning
using data from supercomputer field data.

4.5.3 LANL ATDM Software Ecosystem & Delivery Projects - BEE/Charliecloud Subproject

Overview The BEE/Charliecloud subproject is creating software tools to increase portability and repro-
ducibility of scientific applications on high performance and cloud computing platforms. Charliecloud [199]
is an unprivileged Linux container runtime. It allows developers to use the industry-standard Docker [200]
toolchain to containerize scientific applications and then execute them on unmodified DOE facility computing
resources without paying any performance penalty. BEE [201] (Build and Execution Environment) is a toolkit

Exascale Computing Project (ECP) 153 ECP-RPT-ST-0001-2018

providing users with the ability to execute application workflows across a diverse set of hardware and runtime
environments. Using Bee’s tools, users can build and launch applications on HPC clusters and public and
private clouds, in containers or in containers inside of virtual machines, using a variety of container runtimes
such as Charliecloud and Docker.

Key Challenges Other HPC-focused container runtimes exist, such as NERSC’s Shifter [202] and Sin-
gularity [203]. These alternative runtimes have characteristics, such as complex setup requirements and
privileged user actions, that are undesirable in many environments. Nevertheless, they represent a sizable
fraction of the existing HPC container runtime mindshare. A key challenge for BEE is maintaining support
multiple runtimes and the various options that they require for execution. This is especially true in the
case of Singularity, which evolves rapidly. Similarly, there is a diverse collection of resources that BEE and
Charliecloud must support to serve the ECP audience. From multiple HPC hardware architectures and HPC
accelerators such as GPUs and FPGAs, to differing HPC runtime environments and resource managers, to
a multitude of public and private cloud providers, there is a large set of available resources that BEE and
Charliecloud must take into consideration to provide a comprehensive solution.

Solution Strategy The BEE/Charliecloud project is focusing first on providing support for containerized
production LANL scientific applications across all of the existing LANL production HPC systems. The
BEE/Charliecloud components required for production use at LANL will be documented, released and fully
supported. Follow-on development will focus on expanding support to additional DOE platforms. This
will mean supporting multiple hardware architectures, operating systems, resource managers, and storage
subsystems. Support for alternative container runtimes, such as Docker, Shifter, and Singularity is planned.

Recent Progress Recent Charliecloud progress has been focusing on understanding and documenting best
practices for running large scale MPI jobs using containerized runtimes. Additional work has been done to en-
hance support for using containers with GPUs. Charliecloud is available at https://github.com/hpc/charliecloud
and was recently approved for inclusion in the next release of OpenHPC.

BEE currently has beta-level support for launching Charliecloud containers on LANL HPC systems.
Automated BEE scalability testing is nearing production readiness.

Next Steps There is an Integrated Project Team (IPT) working at LANL on demonstrating a complete
BEE/Charliecloud workflow using production applications on production HPC systems. This work will
produce a well-documented and packaged BEE release consisting of the BEE-Charliecloud launcher, BEEflow
workflow management system, and support for the Slurm resource manager.

Exascale Computing Project (ECP) 154 ECP-RPT-ST-0001-2018

4.5.4 2.3.5.03 LLNL ATDM SW Ecosystem & Delivery: DevRAMP

Overview The DevRAMP (Reproducibility, Analysis, Monitoring, and Productivity for Developers) is
creating tools and services that multiply the productivity of HPC developers through automation. The
project has two major software efforts:

1. Spack is a package manager for HPC [204, 205, 206, 4, 207, 208, 209, 210, 211, 212, 213, 214, 215].
It automates the process of downloading, building, and installing different versions of HPC software
packages and their dependencies. With Spack, facilities can manage complex, multi-user software
deployments on supercomputers, and developers can keep their own dependencies up to date in a
single-user environment. Spack enables complex applications to be assembled from components, lowers
barriers to software reuse, and allows complex HPC environments to be reproduced easily. It is the
glue that holds the ECP software ecosystem together.

2. Sonar is a data cluster and a software stack for performance monitoring and analysis. Sonar allows
developers and facility staff to understand how supercomputers and applications interact. The system
continuously aggregates data from system-level monitoring services, application-level measurement
tools, and facility power and temperature meters. Any facility user can log in, examine performance
data and other data collected about their HPC jobs, and share it with other users. Our focus is on
security for the services running on Sonar (e.g., JupyterHub), and on developing an easy-to-use query
tool, which we call ScrubJay.

Key Challenges Spack makes HPC application complexity manageable. HPC simulation codes are
notoriously complicated, and installing a code on a new platform is not a simple task. Codes are not
self-contained; they rely on tens or even hundreds of dependencies to implement their functionality. While
dependencies allow us to leverage the work of others through code reuse, integrating hundreds of dependencies
in the same application is a monumental challenge. Dependencies may require different configurations and
versions of their own dependency libraries, and codes must be built and tested with different implementations
of interfaces MPI, BLAS, and LAPACK. The space of possible builds is combinatorial in size, and it can only
be effectively managed through automation.

Sonar aims to find the root causes of performance variability of jobs that run at Livermore Computing.
A single application execution may have a different runtime depending on the system it runs on, the file
system it uses, or other jobs running at the same time. A single application execution may not accurately
characterize performance. The causes of this variability may include file system performance, per-node power
consumption, application code performance, and even processor performance from node to node. To analyze
and understand performance variability, we must collect data from the HPC center and from jobs running
at the facility, but we cannot show all application- and facility-level data to all users. We need hardened
security and fine-grained permissions to ensure that data on Sonar is kept safe.

Solution Strategy Spack addresses HPC software complexity in three ways. First, it provides a powerful
build system and a domain-specific language for writing package recipes. This allows HPC builds to be
templated and easily mapped to HPC architectures. It provides dependency resolution infrastructure,
including virtual dependencies, a full parameter system, and a dependency resolver we call a concretizer.
Together, these allow developers to specify customize builds for their own environments based on abstract
descriptions, while Spack handles the tedious aspects of integrating with a new machine. Finally, Spack is an
online service where package recipes can be shared and the HPC community can leverage each others’ effort
to reuse software. One of Spack’s greatest strengths is its very active online contributor community.

Sonar is a data cluster, a data model, a set of monitoring tools, and an analysis front-end for manipulating
this data. To deploy this in the Livermore Computing (LC) center, our project has focused on securing all
components of this stack so that they can be hosted as services in a multi-tenant environment. We have
deployed the Cassandra database, the Spark parallel processing engine, a custom tool of our own called
ScrubJay, among other components. We have added integration that allows each tool to use LC’s user ids
and groups with access control lists. In the case of Jupyter Notebooks and other services that launch jobs,
we are also hardening the process launch infrastructure so that notebooks launch on behalf of users run as
those users in the LC environment.

Exascale Computing Project (ECP) 155 ECP-RPT-ST-0001-2018

Recent Progress Figure 66 (left) shows the progress so far on Sonar deployment. The Cassandra database,
as well as data collection from compute clusters, filesystems, and facility temperature data is complete. We
have also recently completed a full-center deployment of JupyterHub for accessing the data in the cluster.
We were able to deploy JupyterHub by adding SSL encryption to links between the hub and each notebook;
this required us to build a custom certificate authority into JupyterHub. We are currently preparing to
upstreaming our solution to the mainline JupyterHub repository.

Compute
Clusters

LDMS

Sonar Data Cluster
Cassandra (distributed storage),
Spark (distributed processing)

Applications
Lustre

LDMS

IB
Switches

OMS

Facilities

PI

Other

TBD

Caliper

XALT

Jupyter
Dashboards
Visualization

Analysis

Kafka Distributed Ingestion

CompleteIn progress Security integration in progress

Concretize

fetch source code

build

load mpileaks/package.py from repo

fetch from user mirrors

from var/spack/cache (local mirror)

fetch from package URL

install

install

relocate

configureBinary
available?

Yes

No

Install from binary

Build from source

verify signature

verify checksum
...

spack install mpileaks

Figure 66: Sonar deployment (left) and Spack binary packaging (right).

We recently added the capability to create relocatable binary packages to Spack (Figure 66, right). Spack
typically builds all of its packages from source, as this is the de-facto software distribution method for
HPC systems. Recent additions to Spack allow us to package even HPC software in optimized binary form,
and to install in minutes what could previously take hours. We are currently working on making Spack’s
dependency resolution algorithm more robust to handle more aggressive use of binary packages. Figure 67
shows the current Spack concretizer, which will only reuse binaries that exactly match a client-side concrete
spec. The new version will allow Spack to consider available remote binaries at install time, and to search
more aggressively through available binaries for usable dependencies. This will mean even less rebuilding of
software, and for HPC systems, this means we will be able to match optimized binaries to the machine.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

Concretize

Current In progress

Fetch exact hashes,
if available

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

Concretize

Prefer available binaries in
concretization

Download available
specs from mirror

Figure 67: Spack concretizer design changes.

Next Steps

1. Securing Kafka for Sonar. Sonar will ingest application data from the filesystem using a tool called
Kafka. Kafka is a streaming communication infrastructure; it runs as a daemon and reliably transfers
data from files to a database. Kafka typically runs as a single user, but HPC centers are multi-tenant
installations. We will be adding functionality to ensure that Kafka preserves the identity of file owners
in the filesystem when it ingests data into the database.

2. Spack release testing and binary hosting. Spack serves as a repository for package recipes, but
we do not have any automated build testing of packages included in the Spack repository. To increase
the robustness and reliability of Spack, we are adding automation for building all packages in each
Spack release, and for creating binary packages from such builds. We aim to provide binary packages
for common configurations of Spack packages.

Exascale Computing Project (ECP) 156 ECP-RPT-ST-0001-2018

4.5.5 Sandia ATDM Software Ecosystem and Delivery - Technology Demonstrator

Overview This project is part of the NNSA/ASC program and is primarily focused on the integration of
programming models technologies in existing applications. This project spans both the Code Development
and Applications (CDA) and Architecture and Software Development (ASD) components of Sandia’s ATDM
program element, and this description only covers the ASD portion of the project.

The purpose of this project is to broaden the impact of programming model technologies developed in
ATDM by integrating these technologies into an existing ASC code suite, evaluating the ability of these
technologies to be incrementally added into a legacy code base and to deliver performance improvements
on current- and next-generation computing platforms. In particular, this subproject focuses on using and
evaluating Kokkos and asynchronous many task (AMT) programming models in the NGP Contact code.
Kokkos is an abstraction layer that implements a parallel programming model in C++ for writing performance
portable applications targeting all major HPC platforms. NGP Contact is a performance-critical proximity
search component relevant to many NNSA applications, including ASC production applications that invoke
mechanical or thermal contact, coupled physics transfers, and particle algorithms. This project is important
the overall ECP efforts because it evaluates how well technologies developed for next-generation applications
can be leveraged by existing large application code bases, such as the ASC Sierra toolkit, in an effort to
maximize the impact of ECP technologies.

Key Challenges The main challenge associated with this project is the incremental integration of a new
programming model and programming system into an existing very large production application. This
challenge is similar in many ways to the incremental integration of OpenMP into an existing large MPI
application. As Kokkos is a higher-level abstraction layer that can be implemented using OpenMP, there are
additional challenges around the ability of Kokkos’ abstractions and interfaces to integrate into an existing
application and minimizing the performance penalty of the abstraction layer for different underlying hardware
implementations.

Solution Strategy The strategy for this project is to produce demonstration applications that drive the
development of an AMT scheduling toolset and to enable leveraging of Sierra-developed technologies to
support ATDM application milestones.

Recent Progress The Sierra Solid Mechanics team helped integrate a GPU enabled bounding box search
into the Technology Demonstrator (TD) application. This is the first component needed for a GPU contact
algorithm and is the result of an ongoing collaboration between ATDM and Sierra/SM. The TD application
is linking in this search and exercising it on both a CPU and GPU.

Next Steps The next component to integrate is a GPU enabled closest point projection, also developed
jointly by ATDM and Sierra/SM.

Exascale Computing Project (ECP) 157 ECP-RPT-ST-0001-2018

4.5.6 Sandia ATDM Software Ecosystem and Delivery - OS/On-Node Runtime

Overview This project is part of the NNSA/ASC program and is primarily focused on operating system
and runtime system (OS/R) technology development and evaluation. This project is tightly aligned with the
Qthreads ECP project.

This project focuses on the design, implementation, and evaluation of OS/R interfaces, mechanisms, and
policies supporting the efficient execution of the ATDM application codes on next-generation ASC platforms.
Priorities in this area include the development of lightweight tasking techniques that integrate network
communication, interfaces between the runtime and OS for management of critical resources (including
multi-level memory, non-volatile memory, and network interfaces), portable interfaces for managing power
and energy, and resource isolation strategies at the operating system level that maintain scalability and
performance while providing a more full-featured set of system services. The OS/R technologies developed
by this project will be evaluated in the context of ATDM application codes running at large-scale on ASC
platforms. Through close collaboration with vendors and the broader community, the intention is to drive the
technologies developed by this project into vendor-supported system software stacks and gain wide adoption
throughout the HPC community.

Key Challenges Key challenges for this project include:

• Improve the understanding of the use of containers and virtualization technology to sup-
port ATDM applications and workloads Containers are gaining popularity as a way to package
applications and virtualize the underlying OS to allow a set of executables built for one platform to be
run unmodified on a different platform. There are several different approaches to building and deploying
containers, each with differing sets of capabilities and features.

• Characterizing applications use of MPI and sensivity to system noise Understanding how
applications use MPI and its associated network resources requires both application- and hardware-level
information that must be coordinated on time scales of less than a microsecond. It is also extremely
difficult to isolate the sources of system noise and characterize the non-local side effects of unplanned
detours that interrupt application execution flow.

Solution Strategy The strategy for containers and virtualization is to evaluate the different technology
options using ATDM applications and workflows and compare the results against a set of evaluation criteria.

In order to characterize applications use of MPI and sensitivity to system noise, this project has developed
a simulation environment that can be used to track MPI and network resource usage. This project is also using
lightweight operating systems, which are virtually devoid of system noise, help understand how applications,
especially those employing an ATM programming model, are impacted by OS noise.

Recent Progress Potential use cases and technical options for container technologies in ATDM were
evaluated and published in a conference paper [216], which was nominated for best paper.

A journal article with analyses of MPI queue behavior observed during executions of Sandia mini-apps, as
well as LAMMPS and CTH, has been accepted for publication [217]. The techniques were also applied to
SPARC, and an expanded tech report version including the SPARC results will be available soon.

Next Steps Sandia’s Kitten lightweight kernel has been ported to the Cray XC architecture and has been
demonstrated on the Volta testbed system. Going forward, we are working on plans to port Kitten and/or the
RIKEN McKernel lightweight kernel to the Vanguard Petascale ARM platform. We will be visiting RIKEN
in early March to discuss plans and collaboration opportunities.

Close to having the Qthreads backend to Kokkos patched up after last year’s frontend-to-backend API
changes. Completion is contingent on resolution of the Kokkos team’s remaining patches to the threads
back-end, with which Qthreads shares common hooks.

We are participating in an ECP working group on container technology and using the results of evaluation
to guide future activities in this area.

Exascale Computing Project (ECP) 158 ECP-RPT-ST-0001-2018

4.5.7 Argo

Overview The Argo project [218] is building portable, open source system software that improves the
performance and scalability and provides increased functionality to Exascale applications and runtime systems.

We focus on four areas of the OS/R stack where the need from the ECP applications and facilities is
perceived to be the most urgent: 1) support for hierarchical memory; 2) dynamic and hierarchical power
management to meet performance targets; 3) containers for managing resources within a node; and 4)
internode interfaces for collectively managing resources across groups of nodes.

Key Challenges Many ECP applications have a complex runtime structure, ranging from in situ data
analysis, through an ensemble of largely independent individual subjobs, to arbitrarily complex workflow
structures [219]. At the same time, HPC hardware complexity increases as well, from deeper memory
hierarchies encompassing on-package DRAM and byte-addressable NVRAM, to heterogeneous compute
resources and performance changing dynamically based on power/thermal constraints.

To meet the emerging needs of ECP workloads while providing optimal performance and resilience, the
compute, memory, and interconnect resources must be managed in cooperation with applications and runtime
systems; yet existing resource management solutions lack the necessary capabilities and vendors are reluctant
to innovate in this space in the absence of clear directions from the community.

Solution Strategy Our approach is to augment and optimize for HPC the existing open source offerings
provided by vendors. We are working with ECP applications and runtime systems to distill the needed new
interfaces and to build, test, and evaluate the newly implemented functionality with ECP workloads. This
needs to be done in cooperation with facilities, who can provide early hardware testbeds where the newly
implemented functionality can be demonstrated to show benefits, tested at scale, and matured. Over the
years we have cultivated an excellent relationship with the vendors providing HPC platforms because our
approach has been to augment and improve, rather than develop our own OS/R from scratch. IBM, Cray,
and Intel are eager to integrate the components we develop for ECP that can help applications.

Our work in each area focuses on the following:

1. Hierarchical memory: Incorporate NVRAM into the memory hierarchy using UMap: a user-space
mmap replacement for out-of-core data, leveraging recent userfaultfd mechanism of the Linux kernel
for page fault handling, featuring application-class specific prefetching and eviction algorithms. Expose
deep DRAM hierarchy by treating high-bandwidth memory (MCDRAM, HBM) as a scratchpad [220],
managed by the Argonne Memory Library (AML), which provides applications with asynchronous
memory migration between memory tiers and other convenience mechanisms.

2. Power management: PowerStack will explore hierarchical interfaces for power management at three
specific levels [221, 222, 223, 224]: the global level of batch job schedulers (which we refer to as the
Global Resource Manager or GRM), the enclave level of job-level runtime systems (open-source solution
of Intel GEOPM and the ECP Power Steering project will be leveraged here), and the node-level
through measurement and control mechanisms integrated with the NRM (described below). At the
node level, we will develop low-level, vendor-specific monitoring/controlling capabilities to monitor
power/energy consumption, core temperature and other hardware status [225, 226], and control the
hardware power capping and the CPU frequencies.

3. Containers: Develop a Node Resource Manager (NRM) that leverages technologies underlying modern
container runtimes (primarily cgroups) to partition resources on compute nodes [227], arbitrating
between application components and runtime services.

4. Hierarchical resource management: Develop a set of distributed services and user-facing inter-
faces [228] to allow applications and runtimes to resize, subdivide, and reconfigure their resources inside
a job. Provide the enclave abstraction: recursive groups of nodes that are managed as a single entity;
those enclaves can then be used to launch new services or to create subjobs that can communicate with
each other.

Exascale Computing Project (ECP) 159 ECP-RPT-ST-0001-2018

Recent Progress We identified initial representative ECP applications and benchmarks of interest, focusing
in particular on characteristics such as: coupled codes consisting of multiple components, memory-intensive
codes that do not fit well in DRAM or that are bandwidth-bound, and codes with dynamically changing
resource requirements.

We designed and developed an API between Node Power and Node Resource Manager (NRM), which in
turn allows Global Resource Manager (GRM) to control and monitor power and other node-local resources.
Additionally, we studied the effect of power capping on different applications using the NodePower API and
developed power regression models required for a demand-response policy, which may be added to the GRM
in future.

We developed Yggdrasil, a resource event reactor that provides the enclave abstraction. It can use
standard HPC schedulers such as SLURM or Flux as a backend.

We developed the initial, centralized version of the Global Resource Manager (GRM) providing a
hierarchical framework for power control. We enhanced existing PowSched codebase to use the power controller
in the node OS to acquire node local power data and adjust the power caps. We also developed a variation-
aware scheduler to address manufacturing variability under power constraints with Flux infrastructure, and
extended SLURM to support power scheduling plugins to enable our upcoming GRM milestones.

We designed and developed the first version of the unified Node Resource Manager. The NRM provides
high level of control over node resources, including initial allocation at job launch and dynamic reallocation
at the request of the application and other services. The initial set of managed resources includes CPU cores
and memory; they can be allocated to application components via a container abstraction, which is used to
describe partitions of physical resources (to decrease interference), and more.

We developed the first stable version of UMap, the user-space memory map page fault handler for NVRAM.
UMap handler maps application threads’ virtual address ranges to persistent data sets, transparently pages
in active pages and evicts unused pages. We evaluated the costs and overheads of various approaches and
characterized end-to-end performance for simple I/O intensive applications.

We designed AML, a memory library for explicit management of deep memory architectures, and validated
it on Intel’s Knights Landing. Its main feature is a scratchpad API, allowing applications to implement
algorithms similar to out-of-core for deep memory. We provided multiple optimized versions of memory
migration facilities, ranging from a regular copy to a transparent move of memory pages, using synchronous
and asynchronous interfaces and single- and multithreaded backends.

Container 1

Container 2

Argo
Node
Power

libMSR COOLR hwloc

. . .

Enclave
Resource
Manager

Compute Nodes

Management
Node

. . .

Enclaves

. . .
. . .

Global
Resource
Manager

Application

Argo
Container

Argo
Container

Argo
Container

NVRAM

DRAM

UMap

Stacked DRAM

ServiceOS

Node
Resource
Manager

AML

Argo
Node
Power

Figure 68: Global and node-local components of the Argo software stack and
interactions between them and the surrounding HPC system components.

Next Steps We plan to investigate different power management policies, particularly demand response,
which is becoming a crucial feature for data centers, allowing to reduce the power consumption of servers
without killing running applications or shutting down nodes. We plan to continue the development of
power-aware versions of SLURM and Flux, and enable the path toward integration with GEOPM and NRM.

We plan to improve the control loop inside the NRM to take into account I/O and memory interference
when placing containers on a node. We are also working on making the NRM implementation compatible
with Singularity.

We plan to improve the performance of UMap and demonstrate it with an astronomy application having
hundreds of files. We plan to port applications to AML and integrate with runtime projects like BOLT or
PaRSEC for efficient use of Knights Landing memory using our scratchpad.

Exascale Computing Project (ECP) 160 ECP-RPT-ST-0001-2018

4.5.8 Flang

Overview The Flang project provides an open source Fortran [229] [230] [231] compiler licensed and
designed for integration with the LLVM Compiler Infrastructure (see http://llvm.org) [232]. The Flang
compiler is a cross-platform Fortran solution for multicore CPUs available to ECP and HPC users today.
Goals of the project include extending support to GPU accelerators and Exascale systems, and supporting
LLVM-based software and tools R&D of interest to a large deployed base of Fortran applications. With the
growing popularity and wide adoption of LLVM within the broader HPC community, this project provides
the foundation for a Fortran solution that will complement and interoperate with the Clang/LLVM C++
compiler. It will allow Fortran to grow into a modernized open source form that is stable and has an
active footprint within the LLVM community, and will meet the needs of a broad scientific computing
community. The Flang source code base is derived from the well-established PGI/NVIDIA proprietary
Fortran compiler, which provides a solid compiler base from which to evolve a Fortran front-end and
runtime libraries coded in a style which will allow new contributors to ramp up and be productive quickly.
The most active developers continue to be PGI/NVIDIA, with recent contributions from ARM Ltd and
the DOE National Labs demonstrating a path to long-term sustainability. Full source is available at
https://github.com/flang-compiler/flang, and mailing lists and a Slack channel have been created
(http://lists.flang-compiler.org/ and http://flang-compiler.slack.com/ respectively).

Key Challenges There are several commercially-supported Fortran compilers, typically available on only
one or a few platforms. None of these are open source. The GNU gfortran open source compiler is available
on a wide variety of platforms, but the source base is not modern LLVM-style C++, and the GPL open
source license is not compatible with LLVM. As a result, leveraging gfortran in the LLVM community is
problematic. The primary challenge of this project is to create a source base with the maturity, features
and performance of proprietary solutions, the cross-platform capability of GNU compilers, and which is
licensed and coded in a style that will be embraced by the LLVM community. Another key challenge is
robustly supporting all Fortran language features, programming models and scalability that will be required
for effective use on Exascale systems, and balancing project resources across immediate bug fixes and minor
requests-for-enhancement versus the strategic requirement to modernize the source code base.

Solution Strategy The Flang project strategy was and is to streamline (remove unused legacy code, modify
source to compile cleanly with no Clang warnings, minimize or eliminate use of conditional compilation,
incremental migration to C++) and integrate the existing PGI Fortran front-end with LLVM’s opt/llc
components to create an open source baseline compiler with the same Fortran language and OpenMP features
as the commercial PGI Fortran compiler. From that baseline compiler, additional Fortran language and
OpenMP features will be added while tracking the evolution of LLVM closely from release-to-release. Also
from that baseline compiler, selected components will be prioritized for significant refactoring or re-writing as
required to meet the requirements of the LLVM community, to enable LLVM developers to easily ramp up
and contribute, and to support all of modern Fortran and its related programming models in a fully robust
way across all supported platforms.

Recent Progress Recent developments have added support for Fortran debugging, substantially all of
OpenMP 4.5 [233] targeting multicore CPUs, and an all-new infrastructure for optimized scalar and SIMD
Fortran numerical intrinsics. With these in place, Flang delivers performance averaging 5% faster than
gfortran across a range of benchmarks and enables ECP developers to write and test OpenMP 4.5 on multicore
CPU targets.

Figure 69 illustrates the relative performance of Flang against gfortran.

Next Steps We have recently started work on OpenMP 4.5 target offload support for NVIDIA Tesla GPUs
and on an all-new Fortran 2018 parser written in modern C++ suitable for the LLVM project. We will
continue work on GPU targeting for the remainder of 2018, and after DOE review we will open source the new
Fortran 2018 parser and begin work on related components including semantic analysis, OpenMP support
in the new parser, and the aspects of the front-end required for lowering representations and bridging to

Exascale Computing Project (ECP) 161 ECP-RPT-ST-0001-2018

http://llvm.org
https://github.com/flang-compiler/flang
http://lists.flang-compiler.org/
http://flang-compiler.slack.com/

Figure 69: Flang performance is benchmarked against other Fortran compilers.
The above diagram shows the relative performance of Flang against PGI Fortran
and GNU gfortran

LLVM. As we work through these aspects of modernization, we will continue to build up the Flang testing
infrastructure and be as responsive as possible to bug reports and minor requests for enhancement from what
will hopefully be a growing base of Flang users in the ECP and HPC communities.

Exascale Computing Project (ECP) 162 ECP-RPT-ST-0001-2018

5. CONCLUSION

ECP ST is providing a collection of essential software capabilities necessary for successful results from Exascale
computing platforms, while also delivery a suite of products that can be sustained into the future. This
Capabilities Assessment Report and subsequent versions will provide a periodic summary of capabilities,
plans, and challenges as the Exascale Computing Project proceeds.

Exascale Computing Project (ECP) 163 ECP-RPT-ST-0001-2018

ACKNOWLEDGEMENTS

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC,
a collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security
Administration—responsible for the planning and preparation of a capable Exascale ecosystem—including
software, applications, hardware, advanced system engineering, and early testbed platforms—to support the
nation’s Exascale computing imperative.

Exascale Computing Project (ECP) 164 ECP-RPT-ST-0001-2018

REFERENCES

[1] Rajeev Thakur, Pat McCormick, Jim Ahrens, Al Geist, Michael A. Heroux, Rob Neely, Rob Ross,
Martin Schulz, and Jeff Vetter. Ecp software technology gap analysis. This is an internal report for the
Exascale Computing Project, Software Technology Focus Area.

[2] Michael A. Heroux. Episode 17: Making the development of scientific applica-
tions effective and efficient. https://soundcloud.com/exascale-computing-project/

episode-17-making-the-development-of-scientific-applications-effective-and-efficient.

[3] Roscoe Bartlett, Irina Demeshko, Todd Gamblin, Glenn Hammond, Michael Heroux, Jeffrey Johnson,
Alicia Klinvex, Xiaoye Li, Lois McInnes, J. David Moulton, Daniel Osei-Kuffuor, Jason Sarich, Barry
Smith, James Willenbring, and Ulrike Meier Yang. xsdk foundations: Toward an extreme-scale scientific
software development kit. Supercomput. Front. Innov.: Int. J., 4(1):69–82, March 2017.

[4] Todd Gamblin, Matthew P. LeGendre, Michael R. Collette, Gregory L. Lee, Adam Moody, Bronis R.
de Supinski, and W. Scott Futral. The Spack Package Manager: Bringing order to HPC software chaos.
In Supercomputing 2015 (SC’15), Austin, Texas, November 15-20 2015. LLNL-CONF-669890.

[5] Livermore Computing. Toss: Speeding up commodity cluster computing. https://computation.llnl.
gov/projects/toss-speeding-commodity-cluster-computing.

[6] OpenHPC. Community building blocks for hpc systems. http://openhpc.community.

[7] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings of
the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and Platform
Adaptation”.

[8] hypre: High performance preconditioners. http://www.llnl.gov/CASC/hypre/.

[9] MFEM Web page. http://mfem.org.

[10] Marat Valiev, Eric J Bylaska, Niranjan Govind, Karol Kowalski, Tjerk P Straatsma, Hubertus JJ
Van Dam, Dunyou Wang, Jarek Nieplocha, Edoardo Apra, Theresa L Windus, et al. Nwchem: a
comprehensive and scalable open-source solution for large scale molecular simulations. Computer
Physics Communications, 181(9):1477–1489, 2010.

[11] Mark S Gordon and Michael W Schmidt. Advances in electronic structure theory: GAMESS a decade
later. In Theory and applications of computational chemistry, pages 1167–1189. Elsevier, 2005.

[12] Bruce Palmer, William Perkins, Yousu Chen, Shuangshuang Jin, David Callahan, Kevin Glass, Ruisheng
Diao, Mark Rice, Stephen Elbert, Mallikarjuna Vallem, et al. GridPACK: a framework for developing
power grid simulations on high performance computing platforms. In Proceedings of the Fourth Inter-
national Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance
Computing, pages 68–77. IEEE Press, 2014.

[13] Jeongnim Kim, Andrew Baczewski, Todd Beaudet, Anouar Benali, Chandler Bennett, Mark Berrill,
Nick Blunt, Edgar Josue Landinez Borda, Michele Casula, David Ceperley, Simone Chiesa, bryan
K clark, Raymond Clay, Kris Delaney, Mark Dewing, Ken Esler, Hongxia Hao, Olle Heinonen, Paul
R C Kent, Jaron T. Krogel, Ilkka Kylanpaa, Ying Wai Li, M. Graham Lopez, Ye Luo, Fionn Malone,
Richard Martin, Amrita Mathuriya, Jeremy McMinis, Cody Melton, Lubos Mitas, Miguel A. Morales,
Eric Neuscamman, William Parker, Sergio Flores, Nichols A Romero, Brenda Rubenstein, Jacqueline
Shea, Hyeondeok Shin, Luke Shulenburger, Andreas Tillack, Joshua Townsend, Norman Tubman,
Brett van der Goetz, Jordan Vincent, D. ChangMo Yang, Yubo Yang, Shuai Zhang, and Luning Zhao.
QMCPACK : An open source ab initio quantum monte carlo package for the electronic structure of
atoms, molecules, and solids. Journal of Physics: Condensed Matter, 2018.

[14] Jeff Daily, Abhinav Vishnu, Bruce Palmer, Hubertus van Dam, and Darren Kerbyson. On the suitability
of mpi as a PGAS runtime. In High Performance Computing (HiPC), 2014 21st International Conference
on, pages 1–10. IEEE, 2014.

Exascale Computing Project (ECP) 165 ECP-RPT-ST-0001-2018

https://soundcloud.com/exascale-computing-project/episode-17-making-the-development-of-scientific-applications-effective-and-efficient
https://soundcloud.com/exascale-computing-project/episode-17-making-the-development-of-scientific-applications-effective-and-efficient
https://computation.llnl.gov/projects/toss-speeding-commodity-cluster-computing
https://computation.llnl.gov/projects/toss-speeding-commodity-cluster-computing
http://openhpc.community
http://mfem.org

[15] RAJA Performance Portability Layer. https://github.com/LLNL/RAJA.

[16] CHAI Copy-hiding Array Abstraction. https://github.com/LLNL/CHAI.

[17] Umpire Application-focused Memory Management API. https://github.com/LLNL/Umpire.

[18] RAJA Performance Suite. https://github.com/LLNL/RAJAPerf.

[19] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. Fine-grained
multithreading support for hybrid threaded MPI programming. Int. J. High Perform. Comput. Appl.,
24(1):49–57, February 2010.

[20] Rajeev Thakur and William Gropp. Test suite for evaluating performance of multithreaded MPI
communication. Parallel Comput., 35(12):608–617, December 2009.

[21] William Gropp and Ewing Lusk. Fault tolerance in message passing interface programs. The International
Journal of High Performance Computing Applications, 18(3):363–372, 2004.

[22] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk, R. Thakur, and J. L.
Traeff. MPI on Millions of Cores. Parallel Processing Letters (PPL), 21(1):45–60, March 2011.

[23] D. Buntinas, B. Goglin, D. Goodell, G. Mercier, and S. Moreaud. Cache-efficient, intranode, large-
message MPI communication with MPICH2-nemesis. In 2009 International Conference on Parallel
Processing, pages 462–469, September 2009.

[24] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk, R. Thakur and J. L.
Traeff. MPI on millions of cores. Parallel Processing Letters, 21(1):45–60, 2011.

[25] Y. Guo, C. J. Archer, M. Blocksome, S. Parker, W. Bland, K. Raffenetti, and P. Balaji. Memory
compression techniques for network address management in MPI. In 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 1008–1017, May 2017.

[26] Nikela Papadopoulou, Lena Oden, and Pavan Balaji. A performance study of UCX over infiniband. In
Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid ’17, pages 345–354, Piscataway, NJ, USA, 2017. IEEE Press.

[27] Ken Raffenetti, Abdelhalim Amer, Lena Oden, Charles Archer, Wesley Bland, Hajime Fujita, Yanfei
Guo, Tomislav Janjusic, Dmitry Durnov, Michael Blocksome, Min Si, Sangmin Seo, Akhil Langer,
Gengbin Zheng, Masamichi Takagi, Paul Coffman, Jithin Jose, Sayantan Sur, Alexander Sannikov,
Sergey Oblomov, Michael Chuvelev, Masayuki Hatanaka, Xin Zhao, Paul Fischer, Thilina Rathnayake,
Matt Otten, Misun Min, and Pavan Balaji. Why is MPI so slow?: Analyzing the fundamental limits in
implementing MPI-3.1. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’17, pages 62:1–62:12, New York, NY, USA, 2017. ACM.

[28] Ashwin M. Aji, Lokendra S. Panwar, Feng Ji, Karthik Murthy, Milind Chabbi, Pavan Balaji, Keith R.
Bisset, James Dinan, Wu chun Feng, John Mellor-Crummey, Xiaosong Ma, and Rajeev Thakur.
MPI-ACC: Accelerator-aware MPI for scientific applications. IEEE Trans. Parallel Distrib. Syst.,
27(5):1401–1414, May 2016.

[29] Humayun Arafat, James Dinan, Sriram Krishnamoorthy, Pavan Balaji, and P. Sadayappan. Work
stealing for GPU-accelerated parallel programs in a global address space framework. Concurr. Comput.
: Pract. Exper., 28(13):3637–3654, September 2016.

[30] F. Ji, J. S. Dinan, D. T. Buntinas, P. Balaji, X. Ma and W. chun Feng. Optimizing GPU-to-GPU intra-
node communication in MPI. In 2012 International Workshop on Accelerators and Hybrid Exascale
Systems, AsHES 12, 2012.

[31] Lena Oden and Pavan Balaji. Hexe: A toolkit for heterogeneous memory management. In IEEE
International Conference on Parallel and Distributed Systems (ICPADS), 2017.

Exascale Computing Project (ECP) 166 ECP-RPT-ST-0001-2018

https://github.com/LLNL/RAJA
https://github.com/LLNL/CHAI
https://github.com/LLNL/Umpire
https://github.com/LLNL/RAJAPerf

[32] Mohammad Javad Rashti, Jonathan Green, Pavan Balaji, Ahmad Afsahi, and William Gropp. Multi-
core and network aware MPI topology functions. In Yiannis Cotronis, Anthony Danalis, Dimitrios S.
Nikolopoulos, and Jack Dongarra, editors, Recent Advances in the Message Passing Interface, pages
50–60, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[33] Torsten Hoefler, Rolf Rabenseifner, Hubert Ritzdorf, Bronis R. de Supinski, Rajeev Thakur, and
Jesper Larsson Traff. The scalable process topology interface of MPI 2.2. Concurr. Comput. : Pract.
Exper., 23(4):293–310, March 2011.

[34] Leonardo Arturo Bautista Gomez Robert Latham and Pavan Balaji. Portable topology-aware MPI-I/O.
In IEEE International Conference on Parallel and Distributed Systems (ICPADS), 2017.

[35] Min Si and Pavan Balaji. Process-based asynchronous progress model for MPI point-to-point commu-
nication. In IEEE International Conference on High Performance Computing and Communications
(HPCC), 2017.

[36] Pavan Balaji Seyed Hessamedin Mirsadeghi, Jesper Larsson Traff and Ahmad Afsahi. Exploiting
common neighborhoods to optimize MPI neighborhood collectives. In IEEE International Conference
on High Performance Computing, Data, and Analytics (HiPC), 2017.

[37] Camille Coti, Thomas Herault, Pierre Lemarinier, Laurence Pilard, Ala Rezmerita, Eric Rodriguez,
and Franck Cappello. Blocking vs. non-blocking coordinated checkpointing for large-scale fault tolerant
MPI. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY,
USA, 2006. ACM.

[38] H. V. Dang, S. Seo, A. Amer, and P. Balaji. Advanced thread synchronization for multithreaded MPI
implementations. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pages 314–324, May 2017.

[39] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns, A. Castello, D. Genet,
T. Herault, S. Iwasaki, P. Jindal, L. V. Kale, S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses,
M. Snir, Y. Sun, K. Taura, and P. Beckman. Argobots: A lightweight low-level threading and tasking
framework. IEEE Transactions on Parallel and Distributed Systems, 29(3):512–526, March 2018.

[40] Sean Treichler, Michael A. Bauer, Ankit V. Bhagatwala, Giulio Borghesi, Ramanan Sankaran, Hemanth
Kolla, Jeffrey M. Larkin, Elliott Slaughter, Wonchan Lee, Alex Aiken, Jacqueline H. Chen, and
Patrick S. McCormick. S3D-Legion: An Exascale Software for Direct Numerical Simulation of Turbulent
Combustion with Complex Multicomponent Chemistry. In T.P. Straatsma, K.B. Antypas, and T.J.
Williams, editors, Exascale Scientific Applications: Scalability and Performance Portability, Chapman
& Hall/CRC Computational Science. CRC Press, 11 2017.

[41] David E. Bernholdt, Swen Boehm, George Bosilca, Manjunath Gorentla Venkata, Ryan E. Grant,
Thomas Naughton, Howard P. Pritchard, Martin Schulz, and Geoffroy R. Vallee. A survey of MPI usage
in the U.S. Exascale Computing Program. talk at ExaMPI 2017 workshop, Denver, CO, November
2017.

[42] D. Eberius, T. Patinyasakdikul, and G. Bosilca. Using Software-Based Performance Counters to Expose
Low-Level Open MPI Performance Information. In Proceedings of the 24th European MPI Users’ Group
Meeting, page Article No. 7, Chicago, IL, September 2017.

[43] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio, Jean-Claude Andre,
David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand Braunschweig, et al. The international
exascale software project roadmap. International Journal of High Performance Computing Applications,
25(1):3–60, 2011.

[44] Bronis R. De Supinski and Michael Klemm. OpenMP Technical Report 6: Version 5.0 Preview 2.
http://www.openmp.org/wp-content/uploads/openmp-tr6.pdf, 2017. [Online; accessed 13-April-
2018].

Exascale Computing Project (ECP) 167 ECP-RPT-ST-0001-2018

http://www.openmp.org/wp-content/uploads/openmp-tr6.pdf

[45] Oleksandr Zinenko, Sven Verdoolaege, Chandan Reddy, Jun Shirako, Tobias Grosser, Vivek Sarkar,
and Albert Cohen. Modeling the conflicting demands of parallelism and temporal/spatial locality in
affine scheduling. In Proceedings of the 27th International Conference on Compiler Construction, pages
3–13. ACM, 2018.

[46] Swaroop S Pophale, David E Bernholdt, and Oscar R Hernandez. Openmp 4.5 validation and verification
suite, version 00, 12 2017.

[47] Alok Mishra, Lingda Li, Martin Kong, Hal Finkel, and Barbara Chapman. Benchmarking and evaluating
unified memory for openmp GPU offloading. In Proceedings of the Fourth Workshop on the LLVM
Compiler Infrastructure in HPC, LLVM-HPC@SC 2017, Denver, CO, USA, November 13, 2017, pages
6:1–6:10, 2017.

[48] Ralf S. Engelschall. GNU portable threads (Pth). http://www.gnu.org/software/pth, 1999.

[49] K. Taura and Akinori Yonezawa. Fine-grain multithreading with minimal compiler support – a cost
effective approach to implementing efficient multithreading languages. In PLDI, pages 320–333, 1997.

[50] S. Thibault. A flexible thread scheduler for hierarchical multiprocessor machines. In COSET, 2005.

[51] J. Nakashima and Kenjiro Taura. MassiveThreads: A thread library for high productivity languages.
In Concurrent Objects and Beyond, pages 222–238. Springer, 2014.

[52] K. B. Wheeler, Richard C. Murphy, and Douglas Thain. Qthreads: An API for programming with
millions of lightweight threads. In MTAAP, 2008.

[53] K. Taura, Kunio Tabata, and Akinori Yonezawa. StackThreads/MP: Integrating futures into calling
standards. In PPPoP, pages 60–71, 1999.

[54] A. Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Protothreads: Simplifying event-driven
programming of memory-constrained embedded systems. In SenSys, pages 29–42, 2006.

[55] Chuck Pheatt. Intel R© threading building blocks. Journal of Computing Sciences in Colleges, 23(4):298–
298, 2008.

[56] M. Pérache, Hervé Jourdren, and Raymond Namyst. MPC: A unified parallel runtime for clusters of
NUMA machines. In EuroPar, pages 78–88, 2008.

[57] A. Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R. Douceur. Cooperative task
management without manual stack management. In ATC, 2002.

[58] CORPORATE SunSoft. Solaris multithreaded programming guide. Prentice-Hall, Inc., 1995.

[59] R. von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer. Capriccio: Scalable
threads for internet services. In SOSP, pages 268–281, 2003.

[60] G. Shekhtman and Mike Abbott. State threads library for internet applications. http://state-threads.
sourceforge.net/, 2009.

[61] P. Li and Steve Zdancewic. Combining events and threads for scalable network services implementation
and evaluation of monadic, application-level concurrency primitives. In PLDI, pages 189–199, 2007.

[62] A. Porterfield, Nassib Nassar, and Rob Fowler. Multi-threaded library for many-core systems. In
MTAAP, 2009.

[63] J. del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. TiNy threads: A thread virtual machine
for the Cyclops64 cellular architecture. In WMPP, 2005.

[64] Intel OpenMP runtime library. https://www.openmprtl.org/, 2016.

[65] Barcelona Supercomputing Center. Nanos++. https://pm.bsc.es/projects/nanox/, 2016.

Exascale Computing Project (ECP) 168 ECP-RPT-ST-0001-2018

http://www.gnu.org/software/pth
http://state-threads.sourceforge.net/
http://state-threads.sourceforge.net/
https://www.openmprtl.org/
https://pm.bsc.es/projects/nanox/

[66] L. V. Kalé, Josh Yelon, and T. Knuff. Threads for interoperable parallel programming. In LCPC, pages
534–552, 1996.

[67] S. Treichler, Michael Bauer, and Alex Aiken. Realm: An event-based low-level runtime for distributed
memory architectures. In PACT, pages 263–276, 2014.

[68] R. S. Engelschall. Portable multithreading - the signal stack trick for user-space thread creation. In
ATC, 2000.

[69] Boost.Context. http://www.boost.org/doc/libs/1_57_0/libs/context/, 2009.

[70] H. V. Dang, S. Seo, A. Amer, and P. Balaji. Advanced thread synchronization for multithreaded mpi
implementations. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pages 314–324, May 2017.

[71] Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan Balaji, and Satoshi Matsuoka. Mpi+threads: Runtime
contention and remedies. SIGPLAN Not., 50(8):239–248, January 2015.

[72] John Bachan, Dan Bonachea, Paul H. Hargrove, Steve Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian
van Straalen, and Scott B. Baden. The UPC++ PGAS library for exascale computing. In Proceedings
of the Second Annual PGAS Applications Workshop, PAW17, pages 7:1–7:4, New York, NY, USA, 2017.
ACM. http://doi.acm.org/10.1145/3144779.3169108.

[73] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick. UPC++: A PGAS extension for C++. In
2014 IEEE 28th International Parallel and Distributed Processing Symposium, pages 1105–1114, May
2014. https://ieeexplore.ieee.org/document/6877339/.

[74] Dan Bonachea and Paul Hargrove. GASNet specification, v1.8.1. Technical Report LBNL-2001064,
Lawrence Berkeley National Laboratory, August 2017. http://escholarship.org/uc/item/03b5g0q4.

[75] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: expressing locality and
independence with logical regions. In Proceedings of the international conference on high performance
computing, networking, storage and analysis, page 66. IEEE Computer Society Press, 2012.

[76] The Legion Programming System website. http://legion.stanford.edu/.

[77] Bradford L. Chamberlain. Chapel. In Programming Models for Parallel Computing. The MIT Press,
2015.

[78] The Chapel Parallel Programming Language website. https://chapel-lang.org/.

[79] GASNet website. http://gasnet.lbl.gov/.

[80] Paul H. Hargrove and Dan Bonachea. GASNet-EX performance improvements due to specialization for
the Cray Aries network. Technical Report LBNL-2001134, Lawrence Berkeley National Laboratory,
March 2018. http://escholarship.org/uc/item/6bn019rq.

[81] K.B. Wheeler, R.C. Murphy, and D. Thain. Qthreads: An API for programming with millions
of lightweight threads. In IEEE International Symposium on Parallel and Distributed Processing
Workshops, 2008. IPDPSW 2008, pages 1–8, April 2008.

[82] Sean Williams, Latchesar Ionkov, and Michael Lang. NUMA distance for heterogeneous memory. In
Proceedings of the Workshop on Memory Centric Programming for HPC, MCHPC’17, pages 30–34,
New York, NY, USA, 2017. ACM.

[83] Thaleia Dimitra Doudali and Ada Gavrilovska. CoMerge: Toward efficient data placement in shared
heterogeneous memory systems. In Proceedings of the International Symposium on Memory Systems,
MEMSYS ’17, pages 251–261, New York, NY, USA, 2017. ACM.

[84] LLVM Compiler Infrastructure. LLVM Compiler Infrastructure. http://www.llvm.org.

Exascale Computing Project (ECP) 169 ECP-RPT-ST-0001-2018

http://www.boost.org/doc/libs/1_57_0/libs/context/
http://doi.acm.org/10.1145/3144779.3169108
https://ieeexplore.ieee.org/document/6877339/
http://escholarship.org/uc/item/03b5g0q4
http://legion.stanford.edu/
https://chapel-lang.org/
http://gasnet.lbl.gov/
http://escholarship.org/uc/item/6bn019rq
http://www.llvm.org

[85] George Stelle, William S. Moses, Stephen L. Olivier, and Patrick McCormick. Openmpir: Implementing
openmp tasks with tapir. In Proceedings of the Fourth Workshop on the LLVM Compiler Infrastructure
in HPC, LLVM-HPC’17, pages 3:1–3:12, New York, NY, USA, 2017. ACM.

[86] 2018 European LLVM Developers Meeting. 2018 European LLVM Developers Meeting. https:

//llvm.org/devmtg/2018-04/.

[87] S. K. Gutiérrez, K. Davis, D. C. Arnold, R. S. Baker, R. W. Robey, P. McCormick, D. Holladay, J. A.
Dahl, R. J. Zerr, F. Weik, and C. Junghans. Accommodating thread-level heterogeneity in coupled
parallel applications. In 2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 469–478, May 2017.

[88] Flang Fortran Compiler. Flang Fortran Compiler. https://github.com/flang-compiler/flang.

[89] Dong H. Ahn Joachim Protze, Martin Schulz and Matthias S. Muller. Thread-local concurrency: A
technique to handle data race detection at programming model abstraction. In ACM Symposium on
High-Performance Parallel and Distributed Computing (HPDC 2018), 2018. To appear.

[90] Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamarić, Ignacio Laguna, Greg L. Lee, and Dong H.
Ahn. Sword: A bounded memory-overhead detector of OpenMP data races in production runs. In
Proceedings of the 32nd IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2018. To appear.

[91] Geoffrey Sawaya, Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, and Dong H. Ahn. FLiT:
Cross-platform floating-point result-consistency tester and workload. In 2017 IEEE International
Symposium on Workload Characterization (IISWC), pages 229–238, 2017.

[92] Andreas Krall and Thomas R. Gross, editors. Proceedings of the 23rd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2018, Vienna, Austria, February 24-28, 2018.
ACM, 2018.

[93] A. Haidar, H. Jagode, A. YarKhan, P. Vaccaro, S. Tomov, and J. Dongarra. Power-aware computing:
Measurement, control, and performance analysis for intel xeon phi. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–7, Sept 2017.

[94] A. Haidar, H. Jagode, P. Vaccaro, A. YarKhan, S. Tomov, and J. Dongarra. Investigating power
capping toward energy-efficient scientific applications. Concurrency and Computation: Practice and
Experience 2018;e4485, pages 1–14, March 2018.

[95] Jungwon Kim, Kittisak Sajjapongse, Seyong Lee, and Jeffrey S. Vetter. Design and Implementation of
Papyrus: Parallel Aggregate Persistent Storage. In Proceedings of the 31st IEEE International Parallel
and Distributed Processing Symposium, IPDPS ’17, pages 1151–1162, 2017.

[96] Jungwon Kim, Seyong Lee, and Jeffrey S. Vetter. PapyrusKV: A high-performance parallel key-value
store for distributed NVM architectures. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’17, pages 57:1–57:14, 2017.

[97] Evangelos Georganas, Aydin Buluç, Jarrod Chapman, Leonid Oliker, Daniel Rokhsar, and Katherine
Yelick. Parallel De Bruijn Graph Construction and Traversal for De Novo Genome Assembly. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’14, pages 437–448, 2014.

[98] OpenACC: Commerical Compilers. [Online]. Available: http://openacc.org/tools.

[99] Kyle Friedline, Sunita Chandrasekaran, M. Graham Lopez, and Oscar Hernandez. OpenACC 2.5
Validation Testsuite Targeting Multiple Architectures. In High Performance Computing, pages 557–575,
Cham, 2017. Springer International Publishing.

[100] SPEC ACCEL. [Online]. Available: https://www.spec.org/accel/.

Exascale Computing Project (ECP) 170 ECP-RPT-ST-0001-2018

https://llvm.org/devmtg/2018-04/
https://llvm.org/devmtg/2018-04/
https://github.com/flang-compiler/flang
http://openacc.org/tools
https://www.spec.org/accel/

[101] xSDK Web page. http://xsdk.info.

[102] xSDK Community Policies Web page. http://xsdk.info/policies.

[103] B. Smith, R. Bartlett, and xSDK developers. xSDK community package policies, 2017. version 0.3.0,
November 6, 2017, https://dx.doi.org/10.6084/m9.figshare.4495136.

[104] R. Bartlett, J. Sarich, B. Smith, T. Gamblin, and xSDK developers. xSDK community installation
policies: GNU Autoconf and CMake options, 2017. version 0.3.0, November 6, 2017, https://dx.doi.
org/10.6084/m9.figshare.4495133.

[105] hypre Web page. https://computation.llnl.gov/projects/hypre.

[106] PETSc/TAO Team. PETSc/TAO website. https://www.mcs.anl.gov/petsc.

[107] SuperLU Web page. http://crd-legacy.lbl.gov/~xiaoye/SuperLU.

[108] Trilinos Web page. https://trilinos.org.

[109] MAGMA Web page. http://icl.utk.edu/magma.

[110] SUNDIALS Web page. https://computation.llnl.gov/projects/sundials.

[111] Alquimia Web page. https://bitbucket.org/berkeleylab/alquimia.

[112] PFLOTRAN Web page. http://www.pflotran.org.

[113] Alicia Marie Klinvex. xSDKTrilinos user manual. Technical Report SAND2016-3396 O, Sandia, 2016.

[114] R. D. Falgout, J. E. Jones, and U. M. Yang. The design and implementation of hypre, a library of
parallel high performance preconditioners. In A. M. Bruaset and A. Tveito, editors, Numerical Solution
of Partial Differential Equations on Parallel Computers, volume 51 of Lecture Notes in Computational
Science and Engineering, chapter 8, pages 267–294. Springer-Verlag, 2006. UCRL-JRNL-205459.

[115] V. Henson and U. Yang. BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Applied
Numerical Mathematics, 41:155–177, 2002.

[116] S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate gradient algorithm
for groundwater flow simulations. Nuclear Science and Engineering, 124(1):145–159, September 1996.
UCRL-JC-122359.

[117] Ben Bergen, Irina Demeshko, and Nick Moss. FleCSI: The flexible computational science infrastructure.
Technical report, Los Alamos National Laboratory, 2015.

[118] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Expressing locality and
independence with logical regions. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12, pages 66:1–66:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[119] Laxmikant V. Kale and Sanjeev Krishnan. Charm++: A portable concurrent object oriented system
based on c++. In Proceedings of the Eighth Annual Conference on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’93, pages 91–108, New York, NY, USA, 1993. ACM.

[120] Laxmikant V. Kale and Sanjeev Krishnan. CHARM++: A portable concurrent object oriented system
based on c++. SIGPLAN Not., 28(10):91–108, October 1993.

[121] CORPORATE The MPI Forum. MPI: A message passing interface. In Proceedings of the 1993
ACM/IEEE Conference on Supercomputing, Supercomputing ’93, pages 878–883, New York, NY, USA,
1993. ACM.

[122] Anders Logg and Garth N. Wells. DOLFIN: Automated finite element computing. ACM Trans. Math.
Softw., 37(2):20:1–20:28, April 2010.

Exascale Computing Project (ECP) 171 ECP-RPT-ST-0001-2018

http://xsdk.info
http://xsdk.info/policies
https://dx.doi.org/10.6084/m9.figshare.4495136
https://dx.doi.org/10.6084/m9.figshare.4495133
https://dx.doi.org/10.6084/m9.figshare.4495133
https://computation.llnl.gov/projects/hypre
https://www.mcs.anl.gov/petsc
http://crd-legacy.lbl.gov/~xiaoye/SuperLU
https://trilinos.org
http://icl.utk.edu/magma
https://computation.llnl.gov/projects/sundials
https://bitbucket.org/berkeleylab/alquimia
http://www.pflotran.org

[123] MFEM: Modular finite element methods library. mfem.org.

[124] BLAST: High-order finite element Lagrangian hydrocode. https://computation.llnl.gov/projects/
blast.

[125] R. W. Anderson, V. A. Dobrev, T. V. Kolev, R. N. Rieben, and V. Z. Tomov. High-order multi-material
ALE hydrodynamics. SIAM J. Sc. Comp., 40(1):B32–B58, 2018.

[126] V. A. Dobrev, T. V. Kolev, D. Kuzmin, R. N. Rieben, and V. Z. Tomov. Sequential limiting in
continuous and discontinuous Galerkin methods for the Euler equations. J. Comput. Phys., 356:372–390,
2018.

[127] R. W. Anderson, V. A. Dobrev, T. V. Kolev, D. Kuzmin, M. Quezada de Luna, R. N. Rieben, and V. Z.
Tomov. High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element
method for the transport equation. J. Comput. Phys., 334:102–124, 2017.

[128] V. A. Dobrev, T. V. Kolev, R. N. Rieben, and V. Z. Tomov. Multi-material closure model for high-order
finite element Lagrangian hydrodynamics. Int. J. Numer. Meth. Fluids, 82(10):689–706, 2016.

[129] V. A. Dobrev, T. V. Kolev, and R. N. Rieben. High order curvilinear finite elements for elastic–plastic
Lagrangian dynamics. J. Comput. Phys., 257, Part B:1062 – 1080, 2014.

[130] V. A. Dobrev, T. E. Ellis, Tz. V. Kolev, and R. N. Rieben. High-order curvilinear finite elements for
axisymmetric Lagrangian hydrodynamics. Computers and Fluids, 83:58–69, 2013.

[131] V. A. Dobrev, T. V. Kolev, and R. N. Rieben. High-order curvilinear finite element methods for
Lagrangian hydrodynamics. SIAM J. Sc. Comp., 34(5):B606–B641, 2012.

[132] V. A. Dobrev, T. E. Ellis, Tz. V. Kolev, and R. N. Rieben. Curvilinear finite elements for Lagrangian
hydrodynamics. Int. J. Numer. Meth. Fluids, 65(11-12):1295–1310, 2011.

[133] SUNDIALS Project Team. SUNDIALS Web page. http://computation.llnl.gov/projects/

sundials.

[134] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,
W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley, D. May, L. Curfman McInnes, R. Mills, T. Munson,
K. Rupp, P. Sanan, B. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Users Manual Revision 3.9.
Technical Memorandum ANL-95/11 – Revision 3.9, Argonne National Laboratory, 2018.

[135] A. Dener, T. Munson, J. Sarich, S. Wild, S. Benson, and L. Curfman McInnes. TAO 3.9 Users Manual.
Technical Memorandum ANL/MCS-TM-322 – Revision 3.9, Argonne National Laboratory, 2018.

[136] A robust and scalable preconditioner for indefinite systems using hierarchical matrices and randomized
sampling, Orlando, USA, May 29 - June 2 2017.

[137] Y. Liu, M. Jacquelin, P. Ghysels, and X.S. Li. Highly scalable distributed-memory sparse triangular
solution algorithms. In Proceedings of the SIAM Workshop on Combinatorial Scientific Computing,
Bergen, Norway, June 6-8, 2018 2018.

[138] P. Sao, R. Vuduc, and X.S. Li. A communication-avoiding 3d factorization for sparse matrices. In 32nd
IEEE International Parallel & Distributed Processing Symposium (IPDPS), Vancouver, Canada, May
21-25 2018.

[139] A. Azad, A. Buluc, X.S. Li, X. Wang, and J. Langguth. A distributed-memory approximation algorithm
for maximum weight perfect bipartite matching, January 2018. available via https://arxiv.org/abs/

1801.09809.

[140] David M Beazley et al. SWIG: An easy to use tool for integrating scripting languages with C and C++.
In 4th Conference on USENIX Tcl/Tk Workshop, 1996.

Exascale Computing Project (ECP) 172 ECP-RPT-ST-0001-2018

mfem.org
https://computation.llnl.gov/projects/blast
https://computation.llnl.gov/projects/blast
http://computation.llnl.gov/projects/sundials
http://computation.llnl.gov/projects/sundials
https://arxiv.org/abs/1801.09809
https://arxiv.org/abs/1801.09809

[141] Ahmad Abdelfattah, Hartwig Anzt, Aurelien Bouteiller, Anthony Danalis, Jack Dongarra, Mark Gates,
Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, Stephen Wood, Panruo Wu, Ichitaro
Yamazaki, and Asim YarKhan. SLATE working note 1: Roadmap for the development of a linear
algebra library for exascale computing: SLATE: Software for linear algebra targeting exascale. Technical
Report ICL-UT-17-02, Innovative Computing Laboratory, University of Tennessee, June 2017. revision
04-2018.

[142] Jakub Kurzak, Panruo Wu, Mark Gates, Ichitaro Yamazaki, Piotr Luszczek, Gerald Ragghianti, and
Jack Dongarra. SLATE working note 3: Designing SLATE: Software for linear algebra targeting
exascale. Technical Report ICL-UT-17-06, Innovative Computing Laboratory, University of Tennessee,
September 2017. revision 09-2017.

[143] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Minimizing communication in numerical
linear algebra. SIAM Journal on Matrix Analysis and Applications, 32(3):866–901, 2011.

[144] Michael W Mahoney et al. Randomized algorithms for matrices and data. Foundations and Trends R©
in Machine Learning, 3(2):123–224, 2011.

[145] Jakub Kurzak, Mark Gates, Asim YarKhan, Ichitaro Yamazaki, Panruo Wu, Piotr Luszczek, Jamie
Finney, and Jack Dongarra. SLATE working note 5: Parallel BLAS performance report. Technical
Report ICL-UT-18-01, Innovative Computing Laboratory, University of Tennessee, March 2018. revision
03-2018.

[146] I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, and J. Dongarra. Improving the Performance of
CA-GMRES on Multicores with Multiple GPUs. In 28th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2014), 2014.

[147] Jeffrey Cornelis, Siegfried Cools, and Wim Vanroose. The communication-hiding conjugate gradient
method with deep pipelines. CoRR, abs/1801.04728, 2018.

[148] E. Chow, H. Anzt, and J. Dongarra. Asynchronous Iterative Algorithm for Computing Incomplete
Factorizations on GPUs. In Lecture Notes in Computer Science, volume 9137, pages 1–16, July 12 – 16
2015.

[149] H. Anzt, E. Chow, and J. Dongarra. Iterative sparse triangular solves for preconditioning. In
Jesper Larsson Träff, Sascha Hunold, and Francesco Versaci, editors, Euro-Par 2015: Parallel Processing,
volume 9233 of Lecture Notes in Computer Science, pages 650–661. Springer Berlin Heidelberg, 2015.

[150] Hartwig Anzt, Thomas K. Huckle, Jürgen Bräckle, and Jack Dongarra. Incomplete sparse approximate
inverses for parallel preconditioning. Parallel Computing, 71(Supplement C):1 – 22, 2018.

[151] Better Scientific Software (BSSw) https://bssw.io/.

[152] Production-ready, Exascale-enabled Krylov Solvers for Exascale Computing (PEEKS) icl.utk.edu/
peeks/.

[153] James Ahrens, Berk Geveci, and Charles Law. ParaView: An end-user tool for large data visualization.
In Visualization Handbook. Elesvier, 2005. ISBN 978-0123875822.

[154] Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit: An Object Oriented Approach
to 3D Graphics. Kitware Inc., fourth edition, 2004. ISBN 1-930934-19-X.

[155] Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, Kenneth Moreland, Nathan Fabian,
and Jeffrey Mauldin. Paraview catalyst: Enabling in situ data analysis and visualization. In Proceedings
of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV 2015), pages 25–29, November 2015.

Exascale Computing Project (ECP) 173 ECP-RPT-ST-0001-2018

https://bssw.io/
icl.utk.edu/peeks/
icl.utk.edu/peeks/

[156] Kenneth Moreland, Christopher Sewell, William Usher, Li ta Lo, Jeremy Meredith, David Pugmire,
James Kress, Hendrik Schroots, Kwan-Liu Ma, Hank Childs, Matthew Larsen, Chun-Ming Chen,
Robert Maynard, and Berk Geveci. VTK-m: Accelerating the visualization toolkit for massively
threaded architectures. IEEE Computer Graphics and Applications, 36(3):48–58, May/June 2016.
DOI 10.1109/MCG.2016.48.

[157] Woody Austin, Grey Ballard, and Tamara G. Kolda. Parallel tensor compression for large-scale scientific
data. In IPDPS’16: Proceedings of the 30th IEEE International Parallel and Distributed Processing
Symposium, pages 912–922, May 2016.

[158] Micah Howard, Andrew Bradley, Steven W. Bova, James Overfelt, Ross Wagnild, Derek Dinzl, Mark
Hoemmen, and Alicia Klinvex. Towards performance portability in a compressible cfd code. In AIAA
Computational Fluid Dynamics Conference, AIAA AVIATION Forum, 2017.

[159] NaluCFD webpage. http://nalucfd.org/.

[160] M. A. Gallis, J. R. Torczynski, S. J. Plimpton, D. J. Rader, and T. Koehler. Direct simulation monte
carlo: The quest for speed. In 29th Intl Symposium on Rarefied Gas Dynamics, AIP Conference
Proceedings, 2014. http://sparta.sandia.gov.

[161] TuckerMPI. https://gitlab.com/tensors/TuckerMPI.

[162] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, Daehyun Kim,
and Pradeep Dubey. Fast Sort on CPUs and GPUs: A Case for Bandwidth Oblivious SIMD Sort. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (SIGMOD
’10), pages 351–362, 2010.

[163] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya Maruyama, and
Satoshi Matsuoka. FTI: High performance fault tolerance interface for hybrid systems. In Proceedings
of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’11. ACM, 2011.

[164] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis de Supinski. Design, Modeling, and
Evaluation of a Scalable Multi-level Checkpointing System. In Proceedings of the 2010 International
Conference for High Performance Computing, Networking, Storage and Analysis (SC’10), 2010.

[165] Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Podhorszki, Jong Youl Choi, Scott Klasky,
Roselyne Tchoua, Jay Lofstead, Ron Oldfield, et al. Hello ADIOS: the challenges and lessons of
developing leadership class i/o frameworks. Concurrency and Computation: Practice and Experience,
26(7):1453–1473, 2014.

[166] ADIOS2 documentation. http://adios2-adaptable-io-system-version-2.readthedocs.io.

[167] The ADIOS2 framework. https://github.com/ornladios/ADIOS2.

[168] Peter Lindstrom and Markus Salasoo. zfp version 0.5.3, 2018. https://github.com/LLNL/zfp.

[169] Peter Lindstrom. zfp version 0.5.3 documentation, 2018. http://zfp.readthedocs.io/en/release0.
5.3/.

[170] Stephen Hamilton, Randal Burns, Charles Meneveau, Perry Johnson, Peter Lindstrom, John Patchett,
and Alexander Szalay. Extreme event analysis in next generation simulation architectures. In ISC High
Performance 2017, pages 277–293, 2017.

[171] Peter Lindstrom. Error distributions of lossy floating-point compressors. In JSM 2017 Proceedings,
pages 2574–2589, 2017.

[172] Franck Cappello and Peter Lindstrom. Compression of scientific data. ISC High Performance 2017
Tutorials, 2017.

Exascale Computing Project (ECP) 174 ECP-RPT-ST-0001-2018

http://nalucfd.org/
http://sparta.sandia.gov
https://gitlab.com/tensors/TuckerMPI
http://adios2-adaptable-io-system-version-2.readthedocs.io
https://github.com/ornladios/ADIOS2
https://github.com/LLNL/zfp
http://zfp.readthedocs.io/en/release0.5.3/
http://zfp.readthedocs.io/en/release0.5.3/

[173] Franck Cappello and Peter Lindstrom. Compression of scientific data. IEEE/ACM SC 2017 Tutorials,
2017.

[174] Franck Cappello and Peter Lindstrom. Compression for scientific data. Euro-Par 2018 Tutorials, 2018.

[175] Utkarsh Ayachit. The ParaView guide: a parallel visualization application, 2015.

[176] James Ahrens, Berk Geveci, and Charles Law. ParaView: An end-user tool for large-data visualization.
The visualization handbook, 2005.

[177] Hank Childs, Eric Brugger, Brad Whitlock, Jeremy Meredith, Sean Ahern, David Pugmire, Kathleen
Biagas, Mark Miller, Cyrus Harrison, Gunther H. Weber, Hari Krishnan, Thomas Fogal, Allen Sanderson,
Christoph Garth, E. Wes Bethel, David Camp, Oliver Rübel, Marc Durant, Jean M. Favre, and Paul
Navrátil. VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data. In High Performance
Visualization—Enabling Extreme-Scale Scientific Insight, pages 357–372. CRC Press/Francis–Taylor
Group, October 2012.

[178] Matthew Larsen, James Ahrens, Utkarsh Ayachit, Eric Brugger, Hank Childs, Berk Geveci, and Cyrus
Harrison. The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman. In Proceedings
of the Third Workshop of In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV), held in conjunction with SC17, Denver, CO, USA, October 2017.

[179] Brad Whitlock, Jean Favre, and Jeremy Meredith. Parallel in situ coupling of simulation with a fully
featured visualization system. In Proceedings of the 11th Eurographics Conference on Parallel Graphics
and Visualization (EGPGV), 2011.

[180] James Ahrens, Kristi Brislawn, Ken Martin, Berk Geveci, C. Charles Law, and Michael Papka. Large-
scale data visualization using parallel data streaming. IEEE Computer Graphics and Applications,
21(4):34–41, July/August 2001.

[181] Hank Childs, David Pugmire, Sean Ahern, Brad Whitlock, Mark Howison, Prabhat, Gunther H. Weber,
and E. Wes Bethel. Extreme scaling of production visualization software on diverse architectures. IEEE
Computer Graphics and Applications, 30(3):22–31, May/June 2010. DOI 10.1109/MCG.2010.51.

[182] Kenneth Moreland. The ParaView tutorial, version 4.4. Technical Report SAND2015-7813 TR, Sandia
National Laboratories, 2015.

[183] Kenneth Moreland. Oh, $#*@! Exascale! The effect of emerging architectures on scientific discovery. In
2012 SC Companion (Proceedings of the Ultrascale Visualization Workshop), pages 224–231, November
2012. DOI 10.1109/SC.Companion.2012.38.

[184] Kenneth Moreland, Berk Geveci, Kwan-Liu Ma, and Robert Maynard. A classification of scientific
visualization algorithms for massive threading. In Proceedings of Ultrascale Visualization Workshop,
November 2013.

[185] Kenneth Moreland. The vtk-m user’s guide. techreport SAND 2018-0475 B, Sandia National Laboratories,
2018. http://m.vtk.org/images/c/c8/VTKmUsersGuide.pdf.

[186] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990. ISBN 0-262-02313-X.

[187] Li-ta Lo, Chris Sewell, and James Ahrens. PISTON: A portable cross-platform framework for data-
parallel visualization operators. In Eurographics Symposium on Parallel Graphics and Visualization,
2012. DOI 10.2312/EGPGV/EGPGV12/011-020.

[188] Matthew Larsen, Jeremy S. Meredith, Paul A. Navrátil, and Hank Childs. Ray tracing within a data par-
allel framework. In IEEE Pacific Visualization Symposium (PacificVis), April 2015. DOI 10.1109/PACI-
FICVIS.2015.7156388.

[189] Kenneth Moreland, Matthew Larsen, and Hank Childs. Visualization for exascale: Portable performance
is critical. In Supercomputing Frontiers and Innovations, volume 2, 2015. DOI 10.2312/pgv.20141083.

Exascale Computing Project (ECP) 175 ECP-RPT-ST-0001-2018

http://m.vtk.org/images/c/c8/VTKmUsersGuide.pdf

[190] Jeremy S. Meredith, Sean Ahern, Dave Pugmire, and Robert Sisneros. EAVL: The extreme-scale
analysis and visualization library. In Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV), pages 21–30, 2012. DOI 10.2312/EGPGV/EGPGV12/021-030.

[191] Kenneth Moreland, Brad King, Robert Maynard, and Kwan-Liu Ma. Flexible analysis software for emerg-
ing architectures. In 2012 SC Companion (Petascale Data Analytics: Challenges and Opportunities),
pages 821–826, November 2012. DOI 10.1109/SC.Companion.2012.115.

[192] Robert Miller, Kenneth Moreland, and Kwan-Liu Ma. Finely-threaded history-based topology com-
putation. In Eurographics Symposium on Parallel Graphics and Visualization, pages 41–48, 2014.
DOI 10.2312/pgv.20141083.

[193] James Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism.
O’Reilly, July 2007. ISBN 978-0-596-51480-8.

[194] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP. MIT Press, 2007. ISBN 978-
0-262-53302-7.

[195] B. Smith, R. Bartlett, and xSDK developers. xSDK community package policies, 2016. version 0.3,
December 2, 2016, https://dx.doi.org/10.6084/m9.figshare.4495136.

[196] R. Bartlett, J. Sarich, B. Smith, T. Gamblin, and xSDK developers. xSDK community installation
policies: GNU Autoconf and CMake options, 2016. version 0.1, December 19, 2016, https://dx.doi.
org/10.6084/m9.figshare.4495133.

[197] PFSEFI. Parallel Fine-grained Soft Error Fault Injector (P-FSEFI). https://github.com/lanl/

PFSEFI".

[198] Q. Guan, N. Debardeleben, S. Blanchard, and S. Fu. F-sefi: A fine-grained soft error fault injection
tool for profiling application vulnerability. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, pages 1245–1254, May 2014.

[199] R Priedhorsky and TC Randles. Charliecloud: Unprivileged containers for user-defined software stacks
in hpc. Technical Report LA-UR-16-22370, Los Alamos National Laboratory, 2016. available as
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-22370.

[200] Docker Inc. Docker. https://www.docker.com.

[201] BEE. BEE. http://bee.dsscale.org.

[202] RS Canon and D Jacobsen. Shifter: Containers for hpc. In Proceedings of the Cray User’s Group, 2016.

[203] Bauer MW Kurtzer GM, Sochat V. Singularity: Scientific containers for mobility of compute. PLoS
ONE, may 2017. available as https://doi.org/10.1371/journal.pone.0177459.

[204] Mario Melara, Todd Gamblin, Gregory Becker, Robert French, Matt Belhorn, Kelly Thompson, Peter
Scheibel, and Rebecca Hartman-Baker. Using Spack to Manage Software on Cray Supercomputers. In
Cray Users Group (CUG 2017), Seattle, WA, May 7-11 2017.

[205] Todd Gamblin, Gregory Becker, Massimiliano Culpo, Gregory L. Lee, Matt Legendre, Mario Melara,
and Adam J. Stewart. Tutorial: Managing HPC Software Complexity with Spack. In Supercomputing
2017, Salt Lake City, Utah, November 13 2017. Full day.

[206] Todd Gamblin, Massimiliano Culpo, Gregory Becker, Matt Legendre, Greg Lee, Elizabeth Fischer, and
Benedikt Hegner. Tutorial: Managing HPC Software Complexity with Spack. In Supercomputing 2016,
Salt Lake City, Utah, November 13 2016. Half day.

[207] Gregory Becker, Matt Legendre, and Todd Gamblin. Tutorial: Spack for HPC. Livermore Computing,
Lawrence Livermore National Laboratory, Livermore, CA, April 6 2017. Half day.

Exascale Computing Project (ECP) 176 ECP-RPT-ST-0001-2018

https://dx.doi.org/10.6084/m9.figshare.4495136
https://dx.doi.org/10.6084/m9.figshare.4495133
https://dx.doi.org/10.6084/m9.figshare.4495133
https://github.com/lanl/PFSEFI"
https://github.com/lanl/PFSEFI"
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-22370
https://www.docker.com
http://bee.dsscale.org
https://doi.org/10.1371/journal.pone.0177459

[208] Todd Gamblin, Gregory Becker, Peter Scheibel, Matt Legendre, and Mario Melara. Managing HPC
Software Complexity with Spack. In Exascale Computing Project 2nd Annual Meeting, Knoxville, TN,
February 6-8 2018. Half day.

[209] Todd Gamblin. Decluttering HPC Software Chaos with SPACK. In SIAM Conference on Parallel
Processing for Scientific Computing (PP’18), Minisymposium on Productive Programming using Parallel
Models, Tools and Scientific Workflows, Tokyo, Japan, March 7 2018.

[210] Todd Gamblin. Tutorial: Managing HPC Software Complexity with Spack. In HPC Knowledge Meeting
(HPCKP’17), San Sebastián, Spain, June 16 2017. 2 hours.

[211] Todd Gamblin. How compilers affect dependency resolution in Spack. In Free and Open source Software
Developers’ European Meeting (FOSDEM’18), Brussels, Belgium, February 3 2018. LLNL-PRES-745770.

[212] Todd Gamblin. Binary packaging for HPC with Spack. In Free and Open source Software Developers’
European Meeting (FOSDEM’18), Brussels, Belgium, February 4 2018. LLNL-PRES-745747.

[213] Todd Gamblin. Spack State of the Union. In Exascale Computing Project 2nd Annual Meeting, Knoxville,
TN, February 6-8, 2018 2018. LLNL-PRES-746210.

[214] Todd Gamblin. Recent developments in Spack. In Easybuild User Meeting, Amsterdam, The Netherlands,
January 30 2018.

[215] Gregory Becker, Peter Scheibel, Matthew P. LeGendre, and Todd Gamblin. Managing Combinatorial
Software Installations with Spack. In Second International Workshop on HPC User Support Tools
(HUST’16), Salt Lake City, UT, November 13 2016.

[216] Andrew Younge, Kevin Pedretti, Ryan E. Grant, and Ron Brightwell. A tale of two systems: Using
containers to deploy HPC applications on supercomputers and clouds. In Proceedings of the 9th IEEE
International Conference on Cloud Computing Technology and Science (CloudCom), December 2017.

[217] Kurt Ferreira, Scott Levy, Kevin Pedretti, and Ryan E. Grant. Characterizing MPI matching via
trace-based simulation. Journal of Parallel Computing, 2018. To appear.

[218] Swann Perarnau, Judicael A Zounmevo, Matthieu Dreher, Brian C Van Essen, Roberto Gioiosa, Kamil
Iskra, Maya B Gokhale, Kazutomo Yoshii, and Pete Beckman. Argo NodeOS: Toward unified resource
management for exascale. In Parallel and Distributed Processing Symposium (IPDPS), 2017 IEEE
International, pages 153–162. IEEE, 2017.

[219] Matthieu Dreher, Swann Perarnau, Tom Peterka, Kamil Iskra, and Pete Beckman. In situ workflows
at exascale: System software to the rescue. In Proceedings of the In Situ Infrastructures on Enabling
Extreme-Scale Analysis and Visualization, pages 22–26. ACM, 2017.

[220] Swann Perarnau, Judicael A Zounmevo, Balazs Gerofi, Kamil Iskra, and Pete Beckman. Exploring
data migration for future deep-memory many-core systems. In IEEE Cluster, 2016.

[221] D. Ellsworth, T. Patki, S. Perarnau, S. Seo, A. Amer, J. Zounmevo, R. Gupta, K. Yoshii, H. Hoffman,
A. Malony, M. Schulz, and P. Beckman. Systemwide power management with Argo. In 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 1118–1121,
2016.

[222] Daniel Ellsworth, Tapasya Patki, Martin Schulz, Barry Rountree, and Allen Malony. A unified platform
for exploring power management strategies. In Proc. 4th International Workshop on Energy Efficient
Supercomputing, 2016.

[223] Tapasya Patki, Natalie Bates, Girish Ghatikar, Anders Clausen, Sonja Klingert, Ghaleb Abdulla, and
Mehdi Sheikhalishahi. Supercomputing centers and electricity service providers: A geographically
distributed perspective on demand management in Europe and the United States. In Julian M. Kunkel,
Pavan Balaji, and Jack Dongarra, editors, International Supercomputing Conference (High Performance
Computing), ISC-HPC, 2016.

Exascale Computing Project (ECP) 177 ECP-RPT-ST-0001-2018

[224] Ryuichi Sakamoto, Thang Cao, Masaaki Knoda, Koji Inoue, Masatsugu Ueda, Tapasya Patki, Daniel
Ellsworth, Barry Rountree, and Martin Schulz. Production hardware overprovisioning: Real-world
performance optimization using an extensible power-aware resource management framework. In Proc.
31st Internation Parallel and Distributed Processing Symposium, 2017.

[225] Kazutomo Yoshii, Pablo Llopis, Kaicheng Zhang, Yingyi Luo, Seda Ogrenci-Memik, Gokhan Memik,
Rajesh Sankaran, and Pete Beckman. Addressing thermal and performance variability issues in dynamic
processors, 3 2017.

[226] Kaicheng Zhang, Seda Ogrenci-Memik, Gokhan Memik, Kazutomo Yoshii, Rajesh Sankaran, and
Pete Beckman. Minimizing thermal variation across system components. In Parallel and Distributed
Processing Symposium (IPDPS), 2015 IEEE International, pages 1139–1148. IEEE, 2015.

[227] Judicael A Zounmevo, Swann Perarnau, Kamil Iskra, Kazutomo Yoshii, Roberto Gioiosa, Brian C
Van Essen, Maya B Gokhale, and Edgar A Leon. A container-based approach to OS specialization for
exascale computing. In Containers, 1st Workshop on (WoC), 2015.

[228] Swann Perarnau, Rajeev Thakur, Kamil Iskra, Ken Raffenetti, Franck Cappello, Rinku Gupta, Pete
Beckman, Marc Snir, Henry Hoffmann, Martin Schulz, et al. Distributed monitoring and management
of exascale systems in the Argo project. In Distributed Applications and Interoperable Systems, pages
173–178. Springer International Publishing, 2015.

[229] Fortran Standards Committee. Information technology – Programming languages – Fortran – Part 1:
Base language. Standard, International Organization for Standardization, Geneva, CH, October 2004.

[230] Fortran Standards Committee. Information technology – Programming languages – Fortran – Part 1:
Base language. Standard, International Organization for Standardization, Geneva, CH, October 2010.

[231] Fortran Standards Committee. Draft International Standard – Information technology – Programming
languages – Fortran – Part 1: Base language. Standard, International Organization for Standardization,
Geneva, CH, December 2017.

[232] LLVM Project Team. LLVM Web page. https://llvm.org.

[233] OpenMP Architecture Review Board. OpenMP Application Program Interface Version 4.5. Specification,
OpenMP.org, 2015.

Exascale Computing Project (ECP) 178 ECP-RPT-ST-0001-2018

https://llvm.org

	EXECUTIVE SUMMARY
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Background
	ECP Software Technology Approach
	Software Development Kits
	ECP ST Software Delivery

	ECP ST Project Restructuring
	New Project Efforts
	FFTs
	LLNL Math Libraries

	ECP ST Technical Areas
	Programming Models & Runtimes
	Scope and Requirements
	Assumptions and Feasibility
	Objectives
	Plan
	Risks and Mitigation Strategies

	Development Tools
	Scope and Requirements
	Assumptions and Feasibility
	Objectives
	Plan
	Risks and Mitigations Strategies

	Mathematical Libraries
	Scope and Requirements
	Assumptions and Feasibility
	Objectives
	Plan
	Risks and Mitigations Strategies

	Data & Visualization
	Scope and Requirements
	Assumptions and Feasibility
	Objectives
	Plan
	Risks and Mitigations Strategies

	SW Ecosystem & Delivery
	Scope and Requirements
	Assumptions and Feasibility
	Objectives
	Plan
	Risks and Mitigations Strategies

	ECP ST Deliverables
	ECP ST Products
	Standards Committees
	Contributions to External Software Products

	ECP ST Project Summaries
	Programming Models & Runtimes
	Programming Models & Runtimes Software Development Kits
	LANL ATDM Programming Models and Runtimes
	LLNL ATDM Programming Models and Runtimes
	SNL ATDM Programming Models: Kokkos
	SNL ATDM Programming Models: DARMA
	xGA
	ISC4MCM (RAJA)
	Exascale MPI
	Legion
	Distributed Tasking at Exascale: PaRSEC
	Kokkos Support
	2.3.1.11 Open MPI for Exascale (OMPI-X)
	Runtime System for Application-Level Power Steering on Exascale Systems
	SOLLVE
	Argobots: Flexible, High-Performance Lightweight Threading
	BOLT: Lightning Fast OpenMP
	UPC++
	GASNet-EX
	Enhancing Qthreads for ECP Science and Energy Impact
	SICM

	Development Tools
	Development Tools Software Development Kits
	LANL ATDM Tools
	LLNL ATDM Development Tools Projects
	SNL ATDM Tools
	Exascale Code Generation Toolkit
	Exa-PAPI
	2.3.2.07-YTune
	HPCToolkit
	PROTEAS: Programming Toolchain for Emerging Architectures and Systems
	PROTEAS | TAU Performance System
	PROTEAS | PAPYRUS: Parallel Aggregate Persistent Storage
	PROTEAS | Clacc: OpenACC in Clang and LLVM

	Mathematical Libraries
	xSDK4ECP
	hypre
	The Flexible Computational Science Infrastructure (FleCSI) Project
	LLNL ATDM Math Libraries
	ATDM SNL Math Libraries
	Enabling Time Integrators for Exascale Through SUNDIALS
	PETSc-TAO
	Factorization Based Sparse Solvers and Preconditioners for Exascale
	ForTrilinos
	SLATE
	PEEKS
	ALExa

	Data & Visualization
	Data & Visualization Software Development Kits
	2.3.4.02 LANL ATDM Data and Visualization
	LLNL ATDM Data & Viz Projects: Workflow
	SNL ATDM Data and Visualization: IOSS and FAODEL
	SNL ATDM Data and Visualization: Visualization Capabilities
	2.3.4.05 STDM07-VeloC: Very Low Overhead Transparent Multilevel Checkpoint/Restart
	ECP EZ: Fast, Effective, Parallel Error-bounded Exascale Lossy Compression for Scientific Data
	UnifyCR – A file system for burst buffers
	ExaHDF5
	ADIOS
	DataLib
	ZFP: Compressed Floating-Point Arrays
	ALPINE
	ECP/VTK-m

	SW Ecosystem & Delivery
	Software Development Kits
	LANL ATDM Software Ecosystem & Delivery Projects - Resilience Subproject
	LANL ATDM Software Ecosystem & Delivery Projects - BEE/Charliecloud Subproject
	2.3.5.03 LLNL ATDM SW Ecosystem & Delivery: DevRAMP
	Sandia ATDM Software Ecosystem and Delivery - Technology Demonstrator
	Sandia ATDM Software Ecosystem and Delivery - OS/On-Node Runtime
	Argo
	Flang

	Conclusion

