
Better Scientific Software Communities

Rene Gassmoeller

University of California, Davis

https://opensource.guideKellogg et al. (2018)

Why talk about software communities?

What is BSSC?

2

▪ I am a maintainer of ASPECT, a CFD solver for computational
geodynamics

Gassmoeller et al, 2017
3

▪ Computational geodynamicist

▪ Transition from user to developer to maintainer of ASPECT

▪ Witnessed growth of the project (4 users >100 users)

▪ Now at Computational Infrastructure for Geodynamics
(CIG), several scientific software projects (~5-10)

▪ 2019 BSSw Fellow of the IDEAS-ECP project

▪ My projects: https://github.com/gassmoeller

Gassmoeller et al, 2017, 2019

Dannberg & Gassmoeller, 2018

4

https://github.com/gassmoeller

Plenty of
tools for
technical
best
practices:

Version Control (git, subversion, ...)

Code Review and Collaboration (github, gitlab, bitbucket)

Testing (ctest, pytest, pyunit, testthat, ...)

Portability (cmake, autoconf, pip)

Documentation (doxygen, sphinx, readthedocs)

Reproducibility (docker, singularity, jupyter)

Scalability (roofline)

5

▪ https://bssw.io/blog_posts

▪ https://ideas-productivity.org/events/hpc-best-practices-
webinars/

▪ https://software-carpentry.org/lessons/

▪ https://geodynamics.org/cig/dev/best-practices/

▪ Wilson, G., et al. (2014). Best practices for scientific computing.
PLoS biology, 12(1).

▪ Heroux, M. A. & Willenbring, J. M. (2009). Barely sufficient software
engineering: 10 practices to improve your CSE software.
In Proceedings of the 2009 ICSE Workshop on Software Engineering
for Computational Science and Engineering (pp. 15-21). IEEE
Computer Society.

▪ Carver, J. C. (2012). Software engineering for computational
science and engineering. Computing in Science &
Engineering, 14(2), 8.

6

https://bssw.io/blog_posts
https://ideas-productivity.org/events/hpc-best-practices-webinars/
https://software-carpentry.org/lessons/
https://geodynamics.org/cig/dev/best-practices/

A lot of things!

As learned within ASPECT:

▪ A project is more than code and data, it is a community

▪ Communities are diverse and often unpredictable

▪ Maintainers must reevaluate and adjust policies and
software architecture

▪ Also see recent BSSW blog by Wolfgang Bangerth:

https://bssw.io/blog_posts/leading-a-scientific-software-
project-it-s-all-personal

https://opensource.guide
7

https://bssw.io/blog_posts/leading-a-scientific-software-project-it-s-all-personal

8

User:
Uses software

Developer:
Changes software

Maintainer:
Cares for software

Community:
Everyone involved

Software:
Code, Tests, Doc

Software Project:
Software + Community

9

1. Interactions between community and software

2. Tradeoffs between competing goals

3. Leadership and governance problems

10

1. Interactions between community and software

▪ Software architecture can support or hinder community growth

▪ Community mood (competitive vs cooperative) influences size
and quality of core architecture

▪ Work on architecture and community is necessary,
although not often acknowledged scientifically

2. Tradeoffs between competing goals

3. Leadership and Governance problems

11

1. Interactions between community and software

2. Tradeoffs between competing goals

• Good for one / bad for others (e.g. performance vs. flexibility)

• Tradeoffs often resolveable using modern strategies
(encapsulation, polymorphism, templates)

• Community needs to align goals, e.g. at developer meetings

• Maintainers might not be aware of user goals

3. Leadership and Governance problems

https://opensource.guide 12

1. Interactions between community and software

2. Tradeoffs between competing goals

3. Leadership and Governance problems

• Horizontal growth (user base) and vertical growth (user
engagement) are necessary to prevent burnout of maintainers
and maintain influx of new users

• Design discussions and policy decisions must be
communicated to a larger userbase

• New users need to feel welcome in the community

• Conflicts need to be managed, not ignored

https://opensource.guide
13

All these challenges are COMMUNITY challenges (either the
interaction of community and software, or the interaction of
community with community)

So why is COMMUNITY MANAGEMENT not in the list of best
practices?

14

COMMUNITY

https://opensource.guide

▪ For general open-source
software widely recognized:

▪ https://opensource.guide

▪ Karl Fogel, “Producing OSS”

▪ Richard Millington,
“Buzzing Communities”

▪ Fitzpatrick & Collins-Sussman
“Debugging Teams”

▪ Many blogs of OS maintainers

▪ For scientific software often not
acknowledged:

▪ Concept of technical superiority

▪ Problems of attribution leads to
‘hero’ codes

▪ Scientists as community
managers?

https://opensource.guide

15

▪ The size of the community limits the activity of a software project

▪ The size of the community is bounded by:

▪ Interest in software

▪ Ease of access

▪ Community support

▪ Community atmosphere

▪ But: A large community creates work. More users mean:

▪ More questions

▪ More feature requests

▪ More bugs discovered

▪ More conflicts

▪ Efficiently managing a community creates success and
saves time!

https://opensource.guide 16

Collect knowledge
from successful
scientific software
projects

Distribute that
knowledge as guides

Prepare new main-
tainers, help
experienced
maintainers

Form a community of
practice

A software project
consists of a collection
of source-code and a
community

Next: A tour through
the guides that are
currently under
construction

17

18

19

Work Work towards their success (it’s your own)

Find
Find capable and committed early users:

•Committed early users become maintainers later

•All but one of ASPECT’s current principal developers were
at the first user meeting in 2014

Know
Know your audience:

•Aimed at application scientists? Developers? Which
subdisciplines? Which career stage?

Define
Define your software’s mission:

•E.g. ASPECT’s mission: To provide the geosciences with a
well-documented and extensible code base for their
research needs.

Open work is
important:

less bugs

more participation

more citations

increasingly required

see IDEAS webinar 24:
“Software Licensing”
by David E. Bernholdt

Common
objections :

Modular
architecture:

allows withholding for a
certain time

allows easy merge later

allows multiple versions
of algorithms

Finding the right
pressure:

intellectual property

scientific reputation

scientific productivity

see IDEAS webinar 21:
“Software Sustainability”

by Neil Chue Hong

address fears, support
courage

show rewards

be persistent

20

Challenges:

▪ A good software
architecture is critical

▪ But developing and
maintaining a good
architecture takes a lot of
time

▪ Community expects growth

▪ Time pressure tempts to
fudge things

https://opensource.guide
21

https://xkcd.com/844/

Challenges:

▪ A good software
architecture is critical

▪ But developing and
maintaining a good
architecture takes a lot of
time

▪ Community expects growth

▪ Time pressure tempts to
fudge things

Possible strategies:

▪ Combine structural and
scientific work

▪ Delegate whenever
possible

▪ Be as responsive and
consistent as you can, not
more

https://opensource.guide
22

23

As maintainers our responsibility is to provide a useful architecture, not to fulfil
every wish from every user.

Time spent on building the proper architecture for a scientific study is useful
time. It might provide unexpected windfalls.

Do not overengineer architecture! This is hard to define, but if there is no
immediate and worthwhile application, do not build the infrastructure for it.

Know your limits. Burnout is a common threat for software maintainers.
(https://opensource.guide/best-practices/#its-okay-to-hit-pause)

▪ The degree of community involvement is up to the project

▪ Members need the skills and tools to make contributions:

▪ Documentation and mentoring pays off in the long run

▪ Every contribution should be reviewed
(See BSSw 2018 fellowship project by Jeff Carver)

▪ Guidance should be provided at
the level of the contributor

The „contributor funnel“,

https://opensource.guide
24

▪ ASPECT’s yearly community
meetings have grown the
userbase and functionality
(40% of yearly commits)

▪ Community meetings help
onboard and mentor new
members

▪ Novice users can learn and
grow and must contribute

▪ Senior participants must
advise, mentor, and review

▪ At least 20% of participants
should be experienced
developers

▪ A time of feature expansion,
not fundamental rewrite

Kellogg et al. (2018)

25

26

Example 1:
Competing techniques

▪ Work on the same problem

▪ Provide different solutions

▪ No solution is universally
superior

▪ A modular architecture
allows both

Example 2:
Similar applications

▪ Work towards similar
applications

▪ Need common technical
solutions

▪ Implement method
together, apply separately

Puckett et al., 2018 ASPECT manual, 2019

27

Example 3:
The same technique

▪ Work on the same
technique

▪ Focus on different aspects
of the technique

▪ E.g. structure and parallel
scalability vs. mathematical
accuracy and convergence

Takeaways:

▪ Feature conflicts are
unavoidable

▪ Mitigating conflicts:

▪ Early discovery and
disclosure!

▪ Efficient communication!

▪ Diplomacy and Creativity!
Find points for cooperation.

▪ Share credit responsibly.

Gassmoeller et al., 2018 28

The question of credit

▪ Increasing importance of
credit for software
(see IDEAS webinar 17:
“Software Citation Today
and Tomorrow” by Daniel S
Katz)

▪ More types of credit:
▪ Perceived competence

▪ Image as maintainer

▪ Social network

▪ Feel useful

Sharing credit

▪ Credit for developers is
important motivation to
contribute

▪ Use contributors/
developers/maintainers
badges to reward members

▪ Still, a lot of motivation
simply comes from working
in a good team and needing
the software (Lakhani &
Wolf, 2003)

29

▪ Project specific, but needs to be publicly visible

▪ Possible ways:

▪ Announce contributions as (automatic) newsletter:

▪ see also https://github.com/gassmoeller/aspect_newsletter

▪ Release announcements include all authors:

▪ see https://aspect.geodynamics.org/doc/doxygen/changes_current.html

▪ Release paper with main authors, e.g.:

▪ Arndt, D., Bangerth, W., Clevenger, T. C., Davydov, D., Fehling, M., Garcia-
Sanchez, D., ... & Kynch, R. M. (2019). The deal. II library, version
9.1. Journal of Numerical Mathematics.

▪ Emphasize community members in talks

▪ Hand over responsibility

▪ Allow write-access to the repository for long-time developers

30

https://github.com/gassmoeller/aspect_newsletter
https://aspect.geodynamics.org/doc/doxygen/changes_current.html

Excerpt from ASPECT’s CONTRIBUTING.md:

“Regularly, the Principal Developers of ASPECT

come together and discuss [...] who should be

invited to join the group of Principal Developers.

Criteria that Principal Developers should match are:

- A profound understanding of ASPECT's structure

and vision,

- A proven willingness to further the project's goals

and help other users,

- Significant contributions to ASPECT (not

necessarily only source code, also mailing list

advice, documentation, benchmarks, tutorials),

- Regular and active contributions to ASPECT for

more than one year, not restricted to user meetings.

The group of current Principal Developers is listed

in the AUTHORS file in the main repository.”

▪ You need help, long-time
contributors want credit …
solve both by publicly
assigning responsibility

▪ Allow gradual growth, let
people prove their
competence (e.g. answer
questions, assign starter
issues)

▪ Establish clear policies to
show growth opportunities

31

▪ Do not bash competing
projects

▪ Avoid holy wars

▪ Compare facts not opinions

▪ Keep communications open
(e.g. at conferences)

▪ Report problems, ask for
advice

▪ Maybe offer help

▪ Having competitors is an
advantage

https://opensource.guide

32Tosi et al., 2015

Answer the survey and send me your response:

http://bit.ly/BSSC-community-survey

Suggestions for improvements:

https://github.com/gassmoeller/BSSC/issues

Open a pull request:

https://github.com/gassmoeller/BSSC/pulls

Send me your feedback:

rene.gassmoeller@mailbox.org

33

http://bit.ly/BSSC-community-survey
https://github.com/gassmoeller/BSSC/issues
https://github.com/gassmoeller/BSSC/pulls
mailto:rene.gassmoeller@mailbox.org

▪ https://gassmoeller.github.io/BSSC/

▪ https://bssw.io/

▪ https://opensource.guide/

▪ https://producingoss.com/

▪ https://www.software.ac.uk/

▪ Bangerth, W., & Heister, T. (2013). What makes computational open
source software libraries successful?. Computational Science &
Discovery, 6(1), 015010.

▪ Smith, A. M., Katz, D. S., & Niemeyer, K. E. (2016). Software citation
principles. PeerJ Computer Science, 2, e86.

▪ Kellogg, L. H., Hwang, L. J., Gassmöller, R., Bangerth, W., & Heister, T.
(2018). The role of scientific communities in creating reusable
software: Lessons from geophysics. Computing in Science &
Engineering, 21(2), 25-35.

https://gassmoeller.github.io/BSSC/
https://bssw.io/
https://opensource.guide/
https://producingoss.com/
https://www.software.ac.uk/

▪ A software project is equally a collection of source-code
and a social network.

▪ A successful software project needs a successful
community.

▪ Effective community management can prevent or resolve
many conflicts and help the project grow.

▪ Thanks for your attention!

35

