
INTRODUCTION TO AMD GPU
PROGRAMMING WITH HIP
Damon McDougall, Chip Freitag, Joe Greathouse, Nicholas Malaya,
Noah Wolfe, Noel Chalmers, Scott Moe, René van Oostrum, Nick Curtis

6/7/2019

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.1

DISCLAIMER

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

DISCLAIMER
The information contained herein is for informational purposes only and is subject to change without notice. While every
precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and
typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro
Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or
fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products
described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this
document. All open source software listed in this presentation is governed by the associated open source license. Terms
and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the
parties or in AMD's Standard Terms and Conditions of Sale. GD-18

©2019 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Ryzen, Threadripper, EPYC, Infinity
Fabric, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this
publication are for identification purposes only and may be trademarks of their respective companies.

PCIe is a trademark (or registered trademark) of PCI-SIG Corporation.

OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc.

Linux is a trademark (or registered trademark) of Linus Torvalds.
2

Agenda

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

▪ Introduction (5 minutes)

▪ AMD GPU Hardware (10 minutes)

▪ GPU Programming Concepts (45 minutes)

▪ GPU Programming Software (15 minutes)

▪ Porting existing CUDA codes to HIP (15 mins)

3

What we won’t cover today (but is still important)

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

▪ Profiling:

⁃ rcprof: command line profiler

⁃ rocprofiler / roctracer: libraries for collecting GPU hardware counters and application traces

⁃ CodeXL: visualize output of rcprof

⁃ Install: sudo apt install rocprofiler-dev roctracer-dev rocm-profiler cxlactivitylogger

▪ Debugging:

⁃ rocr_debug_agent: print state of wavefronts on memory violation / signals

⁃ HIP debugging tips

⁃ In kernel printf

4

https://github.com/GPUOpen-Tools/RCP
https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/ROCm-Developer-Tools/roctracer
https://github.com/GPUOpen-Tools/CodeXL
https://github.com/ROCm-Developer-Tools/rocr_debug_agent
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_debugging.md
https://github.com/ROCm-Developer-Tools/HIP/blob/master/tests/src/kernel/hipPrintfKernel.cpp

What we won’t cover today (but is still important)

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

▪ AOMP (AMD OpenMP Compiler):

⁃ OpenMP 4.5+ support, “target” pragmas, device offloading

▪ GPU Libraries:

⁃ hipBLAS: BLAS functionality on GPUs

⁃ rocFFT: FFTs on GPUs

⁃ rocRAND: random number generation

⁃ rocPRIM / hipCUB: high performance GPU primitives

⁃ Tensile: GEMMs, tensor contractions

⁃ hipSPARSE: BLAS for sparse matrices / vectors

⁃ rocALUTION: iterative sparse solvers

⁃ MIOpen, TensorFlow, PyTorch: machine learning

5

https://github.com/ROCm-Developer-Tools/aomp
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/rocFFT
https://github.com/ROCmSoftwarePlatform/rocRAND
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/ROCmSoftwarePlatform/hipCUB
https://github.com/ROCmSoftwarePlatform/Tensile
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://github.com/ROCmSoftwarePlatform/rocALUTION
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/ROCmSoftwarePlatform/tensorflow-upstream
https://github.com/ROCmSoftwarePlatform/pytorch

Comments

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

▪ Slides will be provided

▪ Ask questions in the google doc; we will be monitoring it

▪ Focus is on single node / device:

⁃ Little discussion of MPI, or multi-node

Please share any feedback or ask questions in the Google Doc

6

AMD GCN GPU Hardware
René van Oostrum <rene.vanoostrum@amd.com>

(based on a presentation by Joe Greathouse, RTG, AMD)

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.7

AMD GCN GPU HARDWARE
AGENDA

Introduction GCN Hardware Overview

AMD GPU Compute Terminology

AMD GPU Architecture GPU Memory and I/O System

GCN Compute Unit Internals

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.8

AMD GCN Hardware Overview

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.9

AMD GCN GPU Hardware Layout

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.10

Command Processor

Shader Engine
(SE0)

Shader Engine
(SE3)

Shader Engine
(SE1)

Shader Engine
(SE2)

AMD GCN GPU Hardware Layout

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.11

Command Processor

Workload
Manager

Workload
Manager

Workload
Manager

Workload
Manager

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

Command Queue Command Queue
Queues reside in

user-visible DRAM

Hardware Configuration Parameters on Modern AMD GPUs

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.12

GPU SKU Shader Engines CUs / SE

AMD Radeon Instinct™ MI60 4 16

AMD Radeon Instinct™ MI50 4 15

AMD Radeon™ VII 4 15

AMD Radeon Instinct™ MI25
AMD Radeon™ Vega 64

4 16

AMD Radeon™ Vega 56 4 14

AMD Radeon Instinct™ MI6 4 9

AMD Ryzen™ 5 2400G 1 11

AMD GPU Compute Terminology

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.13

Overview of GPU Kernels

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.14

GPU Kernel

Functions launched to the GPU that are executed by multiple parallel workers

Examples: GEMM, triangular solve, vector copy, scan, convolution

Overview of GPU Kernels

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.15

GPU Kernel

Workgroup 0

Workgroup 1

Workgroup 2

Workgroup 3

Workgroup 4

…

Workgroup n

Group of threads that are on the GPU at the same time.
Also on the same compute unit.
Can synchronize together and communicate through memory in the CU.

Programmer controls the number of workgroups – it’s usually a function of problem size.

CUDA Terminology
Thread Block

Overview of GPU Kernels

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.16

GPU Kernel

Workgroup 0

Wavefront 0

Workgroup 1

Workgroup 2

Workgroup 3

Workgroup 4

…

Workgroup n

Collection of resources that execute in lockstep, run the same instructions,
and follow the same control-flow path. Individual lanes can be masked off.
Can think of this as a vectorized thread.

CUDA Terminology
Warp

Overview of GPU Kernels

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.17

GPU Kernel

Workgroup 0

Wavefront 0 Wavefront 1 … Wavefront 15

64 work items (threads)

Workgroup 1

Workgroup 2

Workgroup 3

Workgroup 4

…

Workgroup n

Number of wavefronts / workgroup is chosen by developer.
GCN hardware allows up to 16 wavefronts in a workgroup.

Scheduling work to a GPU

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.18

Command Processor

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

Command Queue

Workload
Manager

Workload
Manager

Workload
Manager

Workload
Manager

GPU Memory and I/O

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.19

GPU Memory, I/O, and Connectivity

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.20

GPU

Command Processor

Memory Controllers

HBM/GDDR Memory

Command Queue Command Queue

PCIe®
Controllers

Infinity Fabric
Controllers

DMA
Engines

DMA
EnginesSystem

Memory
Other
GPUs

DMA Engines Accept Work from the Same Queues

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.21

GPU

Command Processor

Memory Controllers

HBM/GDDR Memory

Command Queue Command Queue

PCIe®
Controllers

Infinity Fabric
Controllers

DMA
Engines

DMA
EnginesSystem

Memory
Other
GPUs

Step 1
CPU submits a DMA Transfer

packet to the command queue This is done with user-level
memory writes in Radeon
Open Compute (ROCm).

No kernel drivers involved.

DMA Engines Accept Work from the Same Queues

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.22

GPU

Command Processor

Memory Controllers

HBM/GDDR Memory

Command Queue Command Queue

PCIe®
Controllers

Infinity Fabric
Controllers

DMA
Engines

DMA
EnginesSystem

Memory
Other
GPUs

Step 2
CP Reads the packet and

understands the transfer request

DMA Engines Accept Work from the Same Queues

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.23

GPU

Command Processor

Memory Controllers

HBM/GDDR Memory

Command Queue Command Queue

PCIe®
Controllers

Infinity Fabric
Controllers

DMA
Engines

DMA
EnginesSystem

Memory
Other
GPUs

Step 3
CP sends transfer command to

the target DMA Engine

This can take place in parallel with
other compute work & transfers

DMA Engines Accept Work from the Same Queues

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.24

GPU

Command Processor

Memory Controllers

HBM/GDDR Memory

Command Queue Command Queue

PCIe®
Controllers

Infinity Fabric
Controllers

DMA
Engines

DMA
EnginesSystem

Memory
Other
GPUs

Step 4
DMA Engines Transfer Data

to/from GPU Memory

Transfer takes place within
process’s virtual memory space

GCN Compute Unit Internals

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.25

GCN Compute Unit

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.26

Scalar Unit

▪ Scalar Unit

⁃ Shared by all threads of a wavefront

⁃ Used for flow control, pointer arithmetic, etc.

⁃ Has own GPR pool, scalar data cache, etc.

▪ 8KB Scalar General Purpose Registers (SGPR)

Scalar Registers
(8KB)

GCN Compute Unit

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.27

◢ 4x Vector Units (16-lane SIMD)

‒ CU Total Throughput: 64 Single-Precision (SP) ops/clock

◢ 4x64KB Vector Registers (VGPR)

Scalar Unit
Vector Units
(4x SIMD-16)

Scalar Registers
(8KB)

Vector Registers
(4x 64KB)

27

GCN Compute Unit: SIMD Specifics

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.28

◢ Each Compute Unit (CU) contains 4 SIMD; each SIMD has:

‒ A 16-lane IEEE-754 vector ALU (VALU)

‒ 64KB of vector register file (VGPR)

‒ 256 total registers – each register is 64 4-byte-wide entries

‒ Instruction buffer for 10 wavefronts

Scalar Unit
Vector Units
(4x SIMD-16)

Vector Registers
(4x 64KB)

Scalar Registers
(8KB)

GCN Compute Unit

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.29

◢ 64kb Local Data Share (LDS) – Scratchpad Memory

‒ 32 banks, with conflict resolution

‒ Can be used to shared data between all threads within a workgroup

Scalar Unit
Vector Units
(4x SIMD-16)

Vector Registers
(4x 64KB)

Local Data Share
(64KB)

Scalar Registers
(8KB)

Software Terminology

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.30

Nvidia/CUDA
Terminology

AMD Terminology Description

Streaming
Multiprocessor

Compute Unit (CU) One of many parallel vector processors in a GPU that contain parallel ALUs.
All waves in a workgroups are assigned to the same CU.

Kernel Kernel Functions launched to the GPU that are executed by multiple parallel workers
on the GPU. Kernels can work in parallel with CPU.

Warp Wavefront Collection of operations that execute in lockstep, run the same instructions,
and follow the same control-flow path. Individual lanes can be masked off.

Think of this as a vector thread. A 64-wide wavefront is a 64-wide vector op.

Thread block Workgroup Group of wavefronts that are on the GPU at the same time. Can synchronize
together and communicate through local memory.

Thread Work item / Thread Individual lane in a wavefront. On AMD GPUs, must run in lockstep with other
work items in the wavefront. Lanes can be individually masked off.

GPU programming models can treat this as a separate thread of execution,
though you do not necessarily get forward sub-wavefront progress.

Software Terminology

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.31

Nvidia/CUDA
Terminology

AMD Terminology Description

Global Memory Global Memory DRAM memory accessible by the GPU that goes through some layers cache

Shared memory Local memory Scratchpad that allows communication between wavefronts in a workgroup.

Local memory Private memory Per-thread private memory, often mapped to registers.

AMD GPU Programming
Concepts
Programming with HIP: Kernels, blocks,
threads, and more

Noel Chalmers <noel.chalmers@amd.com>

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.32

What is HIP?

AMD’s Heterogeneous-compute Interface for Portability, or
HIP, is a C++ runtime API and kernel language that allows
developers to create portable applications that can run on
AMD’s accelerators as well as CUDA devices.

HIP:

▪ Is open-source.

▪ Provides an API for an application to leverage GPU
acceleration for both AMD and CUDA devices.

▪ Syntactically similar to CUDA. Most CUDA API calls can be
converted in place: cuda -> hip

▪ Supports a strong subset of CUDA runtime functionality.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

Portable HIP C++ (Host & Device Code)

#include “cuda.h” #include “hcc.h”

nvcc hipcc

Nvidia GPU AMD GPU

33

A Tale of Host and Device

▪ The Host is the CPU

▪ Host code runs here

▪ Usual C++ syntax and features

▪ Entry point is the ‘main’ function

▪ HIP API can be used to create device buffers, move
between host and device, and launch device code.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

▪ The Device is the GPU

▪ Device code runs here

▪ C-like syntax

▪ Device codes are launched via “kernels”

▪ Instructions from the Host are enqueued into “streams”

Source code in HIP has two flavors: Host code and Device code

34

HIP API

▪ Device Management:

⁃ hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()

▪ Memory Management

⁃ hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree()

▪ Streams

⁃ hipStreamCreate(), hipSynchronize(), hipStreamSynchronize(), hipStreamFree()

▪ Events

⁃ hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

▪ Device Kernels

⁃ __global__, __device__, hipLaunchKernelGGL()

▪ Device code

⁃ threadIdx, blockIdx, blockDim, __shared__

⁃ 200+ math functions covering entire CUDA math library.

▪ Error handling

⁃ hipGetLastError(), hipGetErrorString()

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.35

Kernels, memory, and structure of host code

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.36

Device Kernels: The Grid

▪ In HIP, kernels are executed on a 3D ”grid”

⁃ You might feel comfortable thinking in terms of a mesh of points, but it’s not required

▪ The “grid” is what you can map your problem to

⁃ It’s not a physical thing, but it can be useful to think that way

▪ AMD devices (GPUs) support 1D, 2D, and 3D grids, but most work maps well to 1D

▪ Each dimension of the grid partitioned into equal sized “blocks”

▪ Each block is made up of multiple “threads”

▪ The grid and its associated blocks are just organizational constructs

⁃ The threads are the things that do the work

▪ If you’re familiar with CUDA already, the grid+block structure is very similar in HIP

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.37

Device Kernels: The Grid

CUDA HIP OpenCL™

grid grid NDRange

block block work group

thread thread work item

warp wavefront sub-group (?)

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

Some Terminology:

38

The Grid: blocks of threads in 1D

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

Threads in grid have access to:

▪ Their respective block: blockIdx.x

▪ Their respective thread ID in a block: threadIdx.x

▪ Their block’s dimension: blockDim.x

▪ The number of blocks in the grid: gridDim.x

39

The Grid: blocks of threads in 2D

▪ Each color is a block of threads

▪ Each small square is a thread

▪ The concept is the same in 1D and 2D

▪ In 2D each block and thread now has a two-dimensional
index

Threads in grid have access to:

▪ Their respective block IDs: blockIdx.x, blockIdx.y

▪ Their respective thread IDs in a block: threadIdx.x,
threadIdx.y

▪ Etc.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.40

Kernels
A simple embarrassingly parallel loop

for (int i=0;i<N;i++) {

h_a[i] *= 2.0;

}

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

Can be translated into a GPU kernel:

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;

if (i<N) {

d_a[i] *= 2.0;

}

}

▪ A device function that will be launched from the host
program is called a kernel and is declared with the
__global__ attribute

▪ Kernels should be declared void

▪ All pointers passed to kernels must point to memory
on the device (more later)

▪ All threads execute the kernel’s body “simultaneously”

▪ Each thread uses its unique thread and block IDs to
compute a global ID

▪ There could be more than N threads in the grid (we’ll
see why in a minute)

41

Kernels

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

Kernels are launched from the host:

dim3 threads(256,1,1); //3D dimensions of a block of threads

dim3 blocks((N+256-1)/256,1,1); //3D dimensions the grid of blocks

hipLaunchKernelGGL(myKernel, //Kernel name (__global__ void function)

blocks, //Grid dimensions

threads, //Block dimensions

0, //Bytes of dynamic LDS space (ignore for now)

0, //Stream (0=NULL stream)

N, a); //Kernel arguments

Analogous to CUDA kernel launch syntax:

myKernel<<<blocks, threads, 0, 0>>>(N,a);

42

SIMD operations

Why blocks and threads?

Natural mapping of kernels to hardware:

▪ Blocks are dynamically scheduled onto CUs

▪ All threads in a block execute on the same CU

▪ Threads in a block share LDS memory and L1 cache

▪ Threads in a block are executed in 64-wide chunks called “wavefronts”

▪ Wavefronts execute on SIMD units (Single Instruction Multiple Data)

▪ If a wavefront stalls (e.g. data dependency) CUs can quickly context switch to another wavefront

A good practice is to make the block size a multiple of 64 and have several wavefronts (e.g. 256 threads)

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.43

Device Memory

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

The host instructs the device to allocate memory in VRAM and records a pointer to device memory:

int main() {

…

int N = 1000;

size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes); //Host memory

double *d_a = NULL;

hipMalloc(&d_a, Nbytes); //Allocate Nbytes on device

…

free(h_a); //free host memory

hipFree(d_a); //free device memory

}

44

Device Memory

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

The host queues memory transfers:

//copy data from host to device

hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice);

//copy data from device to host

hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost);

//copy data from one device buffer to another

hipMemcpy(d_b, d_a, Nbytes, hipMemcpyDeviceToDevice);

45

Device Memory

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

Can copy strided sections of arrays:

hipMemcpy2D(d_a, //pointer to destination

DLDAbytes, //pitch of destination array

h_a, //pointer to source

LDAbytes, //pitch of source array

Nbytes, //number of bytes in each row

Nrows, //number of rows to copy

hipMemcpyHostToDevice);

46

Error Checking

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

▪ Most HIP API functions return error codes of type hipError_t

hipError_t status1 = hipMalloc(…);

hipError_t status2 = hipMemcpy(…);

▪ If API function was error-free, returns hipSuccess, otherwise returns an error code.

▪ Can also peek/get at last error returned with

hipError_t status3 = hipGetLastError();

hipError_t status4 = hipPeakLastError();

▪ Can get a corresponding error string using hipGetErrorString(status). Helpful for debugging, e.g.

#define HIP_CHECK(command) { \

hipError_t status = command; \

if (status!=hipSuccess) { \

std::cerr << “Error: HIP reports ” << hipGetErrorString(status) << std::endl; \

std::abort(); } }

47

Putting it all together

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

#include “hip/hip_runtime.h”

int main() {

int N = 1000;

size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes); //host memory

double *d_a = NULL;

HIP_CHECK(hipMalloc(&d_a, Nbytes));

…

HIP_CHECK(hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice)); //copy data to device

hipLaunchKernelGGL(myKernel, dim3((N+256-1)/256,1,1), dim3(256,1,1), 0, 0, N, d_a); //Launch kernel

HIP_CHECK(hipGetLastError());

HIP_CHECK(hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost)); //copy results back to host

…

free(h_a); //free host memory

HIP_CHECK(hipFree(d_a)); //free device memory

}

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;

if (i<N) {

d_a[i] *= 2.0;

}

}

48

#define HIP_CHECK(command) { \

hipError_t status = command; \

if (status!=hipSuccess) { \

std::cerr << “Error: HIP reports ” \
<< hipGetErrorString(status) \
<< std::endl; \

std::abort(); } }

Device management and asynchronous computing

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.49

Device Management
Multiple GPUs in system? Multiple host threads/MPI ranks? What device are we running on?

▪ Host can query number of devices visible to system:

int numDevices = 0;

hipGetDeviceCount(&numDevices);

▪ Host tells the runtime to issue instructions to a particular device:

int deviceID = 0;

hipSetDevice(deviceID);

▪ Host can query what device is currently selected:

hipGetDevice(&deviceID);

▪ The host can manage several devices by swapping the currently selected device during runtime.

▪ MPI ranks can set different devices or over-subscribe (share) devices.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.50

Device Properties
The host can also query a device’s properties:

hipDeviceProp_t props;

hipGetDeviceProperties(&props, deviceID);

▪ hipDeviceProp_t is a struct that contains useful fields like the device’s name, total VRAM, clock speed, and GCN
architecture.

⁃ See “hip/hip_runtime_api.h” for full list of fields.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.51

Blocking vs Nonblocking API functions
▪ The kernel launch function, hipLaunchKernelGGL, is non-blocking for the host.

⁃ After sending instructions/data, the host continues immediately while the device executes the kernel

⁃ If you know the kernel will take some time, this is a good area to do some work (i.e. MPI comms) on the host

▪ However, hipMemcpy is blocking.

⁃ The data pointed to in the arguments can be accessed/modified after the function returns.

▪ The non-blocking version is hipMemcpyAsync

hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

▪ Like hipLaunchKernelGGL, this function takes an argument of type hipStream_t

▪ It is not safe to access/modify the arguments of hipMemcpyAsync without some sort of synchronization.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.52

Putting it all together

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

#include “hip/hip_runtime.h”

int main() {

int N = 1000;

size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes); //host memory

double *d_a = NULL;

HIP_CHECK(hipMalloc(&d_a, Nbytes));

…

HIP_CHECK(hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice)); //copy data to device

hipLaunchKernelGGL(myKernel, dim3((N+256-1)/256,1,1), dim3(256,1,1), 0, 0, N, d_a); //Launch kernel

HIP_CHECK(hipGetLastError());

HIP_CHECK(hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost)); //copy results back to host

…

free(h_a); //free host memory

HIP_CHECK(hipFree(d_a)); //free device memory

}

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;

if (i<N) {

d_a[i] *= 2.0;

}

}

The host waits for the kernel to finish here

53

Streams
▪ A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events).

⁃ Tasks enqueued in a stream complete in order on that stream.

⁃ Tasks being executed in different streams are allowed to overlap and share device resources.

▪ Streams are created via:

hipStream_t stream;

hipStreamCreate(&stream);

▪ And destroyed via:

hipStreamDestroy(stream);

▪ Passing 0 or NULL as the hipStream_t argument to a function instructs the function to execute on a stream called the
‘NULL Stream’:

⁃ No task on the NULL stream will begin until all previously enqueued tasks in all other streams have completed.

⁃ Blocking calls like hipMemcpy run on the NULL stream.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.54

Streams
▪ Suppose we have 4 small kernels to execute:

hipLaunchKernelGGL(myKernel1, dim3(1), dim3(256), 0, 0, 256, d_a1);

hipLaunchKernelGGL(myKernel2, dim3(1), dim3(256), 0, 0, 256, d_a2);

hipLaunchKernelGGL(myKernel3, dim3(1), dim3(256), 0, 0, 256, d_a3);

hipLaunchKernelGGL(myKernel4, dim3(1), dim3(256), 0, 0, 256, d_a4);

▪ Even though these kernels use only one block each, they’ll execute in serial on the NULL stream:

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

NULL Stream myKernel1 myKernel2 myKernel3 myKernel4

55

Streams
▪ With streams we can effectively share the GPU’s compute resources:

hipLaunchKernelGGL(myKernel1, dim3(1), dim3(256), 0, stream1, 256, d_a1);

hipLaunchKernelGGL(myKernel2, dim3(1), dim3(256), 0, stream2, 256, d_a2);

hipLaunchKernelGGL(myKernel3, dim3(1), dim3(256), 0, stream3, 256, d_a3);

hipLaunchKernelGGL(myKernel4, dim3(1), dim3(256), 0, stream4, 256, d_a4);

Note 1: Check that the kernels modify different parts of memory to avoid data races.

Note 2: With large kernels, overlapping computations may not help performance.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

NULL Stream

Stream1

Stream2

Stream3

Stream4

myKernel1

myKernel2

myKernel3

myKernel4

56

Streams
▪ There is another use for streams besides concurrent kernels:

⁃ Overlapping kernels with data movement.

▪ AMD GPUs have separate engines for:

⁃ Host->Device memcpys

⁃ Device->Host memcpys

⁃ Compute kernels.

▪ These three different operations can overlap without dividing the GPU’s resources.

⁃ The overlapping operations should be in separate, non-NULL, streams.

⁃ The host memory should be pinned.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.57

Pinned Memory
Host data allocations are pageable by default. The GPU can directly access Host data if it is pinned instead.

▪ Allocating pinned host memory:

double *h_a = NULL;

hipHostMalloc(&h_a, Nbytes);

▪ Free pinned host memory:

hipHostFree(h_a);

▪ Host<->Device memcpy bandwidth increases significantly when host memory is pinned.

⁃ It is good practice to allocate host memory that is frequently transferred to/from the device as pinned memory.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.58

Streams
Suppose we have 3 kernels which require moving data to and from the device:

hipMemcpy(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));

hipLaunchKernelGGL(myKernel1, blocks, threads, 0, 0, N, d_a1);

hipLaunchKernelGGL(myKernel2, blocks, threads, 0, 0, N, d_a2);

hipLaunchKernelGGL(myKernel3, blocks, threads, 0, 0, N, d_a3);

hipMemcpy(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

NULL Stream myKernel1 myKernel2 myKernel3HToD1 HToD2 HToD3 DToH1 DToH2 DToH3

59

Streams
Changing to asynchronous memcpys and using streams:

hipMemcpyAsync(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice, stream1);

hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);

hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);

hipLaunchKernelGGL(myKernel1, blocks, threads, 0, stream1, N, d_a1);

hipLaunchKernelGGL(myKernel2, blocks, threads, 0, stream2, N, d_a2);

hipLaunchKernelGGL(myKernel3, blocks, threads, 0, stream3, N, d_a3);

hipMemcpyAsync(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost, stream1);

hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);

hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

NULL Stream

Stream1

Stream2

Stream3

myKernel1

myKernel2

myKernel3

HToD1

HToD2

HToD3

DToH1

DToH2

DToH3

60

Synchronization
How do we coordinate execution on device streams with host execution? Need some synchronization points.

▪ hipDeviceSynchronize();

⁃ Heavy-duty sync point.

⁃ Blocks host until all work in all device streams has reported complete.

▪ hipStreamSynchronize(stream);

⁃ Blocks host until all work in stream has reported complete.

Can a stream synchronize with another stream? For that we need ‘Events’.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.61

Events
A hipEvent_t object is created on a device via:

hipEvent_t event;

hipEventCreate(&event);

We queue an event into a stream:

hipEventRecord(event, stream);

⁃ The event records what work is currently enqueued in the stream.

⁃ When the stream’s execution reaches the event, the event is considered ‘complete’.

At the end of the application, event objects should be destroyed:

hipEventDestroy(event);

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.62

Events
What can we do with queued events?

▪ hipEventSynchronize(event);

⁃ Block host until event reports complete.

⁃ Only a synchronization point with respect to the stream where event was enqueued.

▪ hipEventElapsedTime(&time, startEvent, endEvent);

⁃ Returns the time in ms between when two events, startEvent and endEvent, completed

⁃ Can be very useful for timing kernels/memcpys

▪ hipStreamWaitEvent(stream, event);

⁃ Non-blocking for host.

⁃ Instructs all future work submitted to stream to wait until event reports complete.

⁃ Primary way we enforce an ‘ordering’ between tasks in separate streams.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.63

Streams
A common use-case for streams is MPI traffic:

//Queue local compute kernel

hipLaunchKernelGGL(myKernel, blocks, threads, 0, computeStream, N, d_a);

//Copy halo data to host

hipMemcpyAsync(h_commBuffer, d_commBuffer, Nbytes, hipMemcpyDeviceToHost, dataStream);

hipStreamSynchronize(dataStream); //Wait for data to arrive

//Exchange data with MPI

MPI_Data_Exchange(h_commBuffer);

//Send new data back to device

hipMemcpyAsync(d_commBuffer, h_commBuffer, Nbytes, hipMemcpyHostToDevice, dataStream);

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

NULL Stream

computeStream

dataStream

myKernel

HToDDToH

MPI

64

Device code, shared memory, and thread
synchronization

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.65

Function Qualifiers
hipcc make two compilation passes through source code. One to compile host code, and one to compile device code.

▪ __global__ functions:

⁃ These are entry points to device code, called from the host

⁃ Code in these regions will execute on SIMD units

▪ __device__ functions:

⁃ Can be called from __global__ and other __device__ functions.

⁃ Cannot be called from host code.

⁃ Not compiled into host code – essentially ignored during host compilation pass

▪ __host__ __device__ functions:

⁃ Can be called from __global__, __device__, and host functions.

⁃ Will execute on SIMD units when called from device code!

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.66

SIMD Execution
On SIMD units, be aware of divergence.

▪ Branching logic (if – else) can be costly:

⁃ Wavefront encounters an if statement

⁃ Evaluates conditional

⁃ If true, continues to statement body

⁃ If false, also continues to statement body with all instructions replaced with NoOps.

⁃ Known as ‘thread divergence’

▪ Generally, wavefronts diverging from each other is okay.

▪ Thread divergence within a wavefront can impact performance.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.67

SIMD Execution

if (threadIdx.x % 2) {

a *= 2.0;

} else {

a *= 3.14;

}

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

//if (threadIdx.x % 2) {

NoOp;

//} else {

a *= 3.14;

//}

//if (threadIdx.x % 2) {

a *= 2.0;

//} else {

NoOp;

//}

68

Memory declarations in Device Code
▪ Malloc/free not supported in device code.

▪ Variables/arrays can be declared on the stack.

▪ Stack variables declared in device code are allocated in registers and are private to each thread.

▪ Threads can all access common memory via device pointers, but otherwise do not share memory.

⁃ Important exception: __shared__ memory

▪ Stack variables declared as __shared__:

⁃ Allocated once per block in LDS memory

⁃ Shared and accessible by all threads in the same block

⁃ Access is faster than device global memory (but slower than register)

⁃ Must have size known at compile time

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.69

Shared Memory
__global__ void reverse(double *d_a) {

__shared__ double s_a[256]; //array of doubles, shared in this block

int tid = threadIdx.x;

s_a[tid] = d_a[tid]; //each thread fills one entry

//all wavefronts must reach this point before any wavefront is allowed to continue.

__syncthreads();

d_a[tid] = s_a[255-tid]; //write out array in reverse order

}

int main() {

…

hipLaunchKernelGGL(reverse, dim3(1), dim3(256), 0, 0, d_a); //Launch kernel

…

}

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

//something is missing here…

70

Thread Synchronization

▪ __syncthreads():

⁃ Blocks a wavefront from continuing execution until all wavefronts have reached __syncthreads()

⁃ Memory transactions made by a thread before __syncthreads() are visible to all other threads in the block after
__syncthreads()

⁃ Can have a noticeable overhead if called repeatedly

▪ Best practice: Avoid deadlocks by checking that all threads in a block execute the same __syncthreads() instruction.

▪ Note 1: So long as at least one thread in the wavefront encounters __syncthreads(), the whole wavefront is considered to
have encountered __syncthreads().

▪ Note 2: Wavefronts can synchronize at different __syncthreads() instructions, and if a wavefront exits a kernel
completely, other wavefronts waiting at a __syncthreads() may be allowed to continue.

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.71

HIP API

▪ Device Management:

⁃ hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()

▪ Memory Management

⁃ hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree()

▪ Streams

⁃ hipStreamCreate(), hipSynchronize(), hipStreamSynchronize(), hipStreamFree()

▪ Events

⁃ hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

▪ Device Kernels

⁃ __global__, __device__, hipLaunchKernelGGL()

▪ Device code

⁃ threadIdx, blockIdx, blockDim, __shared__

⁃ 200+ math functions covering entire CUDA math library.

▪ Error handling

⁃ hipGetLastError(), hipGetErrorString()

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.72

Dynamic Shared Memory
▪ Can actually use __shared__ arrays when sizes aren’t known at compile time

⁃ Called dynamic shared memory

⁃ Declare one array using HIP_DYNAMIC_SHARED macro, use for all dynamic LDS space

⁃ Use the hipLaunchKernelGGL argument we haven’t discussed yet

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.73

Dynamic Shared Memory
__global__ void reverse(double *d_a, int N) {

HIP_DYNAMIC_SHARED(double, s_a); //dynamic array of doubles, shared in this block

int tid = threadIdx.x;

s_a[tid] = d_a[tid]; //each thread fills one entry

//all wavefronts should reach this point before any wavefront is allowed to continue.

__syncthreads();

d_a[tid] = s_a[N-1-tid]; //write out array in reverse order

}

int main() {

…

size_t NsharedBytes = N*sizeof(double);

hipLaunchKernelGGL(reverse, dim3(1), dim3(N), NsharedBytes, 0, d_a, N); //Launch kernel

…

}

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.74

Atomic Operations
Atomic functions:

▪ Perform a read+write of a single 32 or 64-bit word in device global or LDS memory

▪ Can be called by multiple threads in device code

▪ Performed in a conflict-free manner

▪ AMD GPUs support atomic operations on 32-bit integers in hardware

⁃ Float /double atomics implemented as atomicCAS (Compare And Swap) loops, may have poor performance

▪ Can check at compile time if 32 or 64-bit atomic instructions are supported on target device

⁃ #ifdef __HIP_ARCH_HAS_GLOBAL_INT32_ATOMICS__

⁃ #ifdef __HIP_ARCH_HAS_GLOBAL_INT64_ATOMICS__

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.75

Atomic Operations

Operation Type, T Notes

T atomicAdd(T* address, T val) int, long long int, float, double Adds val to *address

T atomicExch(T* address, T val) int, long long int, float Replace *address with val and return
old value

T atomicMin(T* address, T val) int, long long int Replaces *address if val is smaller

T atomicMax(T* address, T val) int, long long int Replaces *address if val is larger

T atomicAnd(T* address, T val) int, long long int Bitwise AND between *address and val

T atomicOr(T* address, T val) int, long long int Bitwise OR between *address and val

T atomicXor(T* address, T val) int, long long int Bitwise XOR between *address and val

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

Supported atomic operations in HIP:

76

AMD GPU Software
Damon McDougall <damon.mcdougall@amd.com>

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.77

AMD GPU Compilers

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

▪ AMD supports several compilers that emit AMDGCN assembly

⁃ hcc

⁃ AOMP (in development, but mentioning for completeness)

⁃ To inspect AMDGCN, instead of objdump you need extractkernel (installed with hcc)

⁃ The GCN ISA is free and open: https://developer.amd.com/resources/developer-guides-manuals/

▪ hcc

⁃ Invoked by hipcc and is just a Perl script that wraps around hcc

⁃ Compiles HIP code

⁃ HIP (Heterogeneous Interface for Portability) is an interface that looks similar to CUDA

⁃ hcc is a fork of clang

⁃ It understands HIP and emits AMDGCN in the resulting binary

⁃ hipcc -> hcc (clang) -> amdgcn

⁃ All the x86 pieces are dealt with in the same way

▪ AOMP (AMD OpenMP Compiler)

⁃ Compiles C/C++ code with OpenMP “target” pragmas

⁃ Links with libomptarget to produce a binary that can offload work to the GPU

hipcc

hcc

amdgcn

78

https://developer.amd.com/resources/developer-guides-manuals/

AMD GPU Compilers: the FORTRAN story

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

▪ FORTRAN is a technology important to the US Department of Energy

▪ AMD has plans to support OpenMP 4.5+ target offload from FORTRAN with two open source options

⁃ F18 (based on llvm)

⁃ gfortran

▪ FORTRAN compiler work is an ongoing effort

▪ See the Frontier spec sheet for what is expected to be supported on Frontier

⁃ https://www.olcf.ornl.gov/wp-content/uploads/2019/05/frontier_specsheet.pdf

79

https://www.olcf.ornl.gov/wp-content/uploads/2019/05/frontier_specsheet.pdf

hipcc usage

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

▪ Usage is pretty simple and accepts all/any flags that vanilla clang accepts

▪ hipcc file.cpp -o a.out

▪ What is happening here?

▪ Set HIP_VERBOSE=7 to see a bunch of useful information

⁃ Compile and link lines

⁃ Various paths

$ HIPCC_VERBOSE=7 hipcc dotprod.cpp -o dotprod

HIP_PATH=/opt/rocm

HIP_PLATFORM=hcc

HSA_PATH=/opt/rocm/hsa

HCC_HOME=/opt/rocm/hcc

hipcc-args: dotprod.cpp -o dotprod

hipcc-cmd: /opt/rocm/hcc/bin/hcc -hc -D__HIPCC__ -I/opt/rocm/hcc/include -

I/opt/rocm/include/hip/hcc_detail/cuda -I/opt/rocm/hsa/include -Wno-deprecated-register -I/opt/rocm/include

-DHIP_VERSION_MAJOR=1 -DHIP_VERSION_MINOR=5 -DHIP_VERSION_PATCH=19025 -D__HIP_ARCH_GFX803__=1 -Wl,--

rpath=/opt/rocm/lib /opt/rocm/lib/libhip_hcc.so -hc -std=c++amp -L/opt/rocm/hcc/lib -Wl,--

rpath=/opt/rocm/hcc/lib -ldl -lm -lpthread -lhc_am -Wl,--whole-archive -lmcwamp -Wl,--no-whole-archive -

L/opt/rocm/hsa/lib -L/opt/rocm/lib -lhsa-runtime64 -lhc_am -lm --amdgpu-target=gfx803 dotprod.cpp -o

dotprod

80

Installing ROCm

▪ Requirements:

⁃ Linux®!

⁃ Ubuntu: ROCm can be installed using a Debian repo.

⁃ CentOS/RHEL: ROCm can be installed using a yum repo.

⁃ Other distros: you must build from source (support planned for SUSE based distributions).

⁃ To run on AMD hardware you need discrete GPUs in families GFX8 (Polaris) or GFX9 (Vega)

⁃ APUs aren’t currently officially supported

▪ ROCm has been on a monthly release cycle

▪ ROCm is now compatible with AMD drivers in some upstream linux kernels.

▪ ROCm can be installed with:

⁃ ROCK kernel driver (from ROCm repos)

⁃ Only supported on Ubuntu, CentOS/RHEL

⁃ AMD drivers in some upstream kernels

⁃ Should work on more distributions

▪ Latest install instructions can be found here: https://github.com/RadeonOpenCompute/ROCm

▪ Also check out: https://github.com/RadeonOpenCompute/Experimental_ROC

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.81

https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/Experimental_ROC

Querying System

▪ rocminfo: Queries and displays information on the system’s hardware

⁃ More info at: https://github.com/RadeonOpenCompute/rocminfo

▪ rocm-smi: Queries and sets AMD GPU frequencies, power usage, and fan speeds

⁃ sudo privileges are needed to set frequencies and power limits

⁃ sudo privileges are not needed to query information

⁃ Get more info by running ‘rocm-smi -h’ or looking at: https://github.com/RadeonOpenCompute/ROC-smi

▪ Querying ROCm version:

⁃ If you install ROCm in the standard location (/opt/rocm) version info is at: /opt/rocm/.info/version-dev

⁃ Can also run the command ‘dkms status’ and the ROCm version will be displayed

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.82

https://github.com/RadeonOpenCompute/rocminfo
https://github.com/RadeonOpenCompute/ROC-smi

AMD GPU Libraries

▪ A note on naming conventions:

⁃ roc* -> AMGCN library usually written in HIP

⁃ cu* -> NVIDIA PTX libraries

⁃ hip* -> usually interface layer on top of roc*/cu* backends

▪ hip* libraries:

⁃ Can be compiled by hipcc and can generate a call for the device you have:

⁃ hipcc->AMDGCN

⁃ hipcc->nvcc (inlined)->NVPTX

⁃ Just a thin wrapper that marshals calls off to a “backend” library:

⁃ corresponding roc* library backend containing optimized GCN or

⁃ corresponding cu* library backend containing NVPTX for NVIDIA devices

⁃ E.g., hipBLAS is a marshalling library:

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

hipBLAS

rocBLAS cuBLAS

83

Decoder ring: Math library equivalents

Basic Linear Algebra
Subroutines

CUBLAS ROCBLAS

Fast Fourier TransformsCUFFT ROCFFT

Deep Learning LibraryCUDNN MIOPEN

Optimized Parallel PrimitivesCUB ROCPRIM

C++ Template Library for
Linear Algebra

EIGEN EIGEN

MORE INFO AT: GITHUB.COM/ROCM-DEVELOPER-TOOLS/HIP → HIP_PORTING_GUIDE.MD

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.84

AMD GPU Libraries: BLAS

▪ rocBLAS – `sudo apt install rocblas`

⁃ Source code: https://github.com/ROCmSoftwarePlatform/rocBLAS

⁃ Documentation: https://rocblas.readthedocs.io/en/latest/

⁃ Basic linear algebra functionality

⁃ axpy, gemv, trsm, etc

⁃ Use hipBLAS if you need portability between AMD and NVIDIA devices

▪ hipBLAS - `sudo apt install hipblas`

⁃ Documentation: https://github.com/ROCmSoftwarePlatform/hipBLAS/wiki/Exported-functions

⁃ Use this if you need portability between AMD and NVIDIA

⁃ It is just a thin wrapper:

⁃ It can dispatch calls to rocBLAS for AMD devices

⁃ It can dispatch calls to cuBLAS for NVIDIA devices

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

hipBLAS

rocBLAS cuBLAS

85

https://github.com/ROCmSoftwarePlatform/rocBLAS
https://rocblas.readthedocs.io/en/latest/
https://github.com/ROCmSoftwarePlatform/hipBLAS/wiki/Exported-functions

AMD GPU Libraries: rocBLAS example

▪ rocBLAS

⁃ Documentation:
https://rocblas.readthedocs.io/en/latest/

⁃ Level 1, 2, and 3 functionality

⁃ axpy, gemv, trsm, etc

⁃ Use hipBLAS only if you need portability
between AMD and NVIDIA devices

⁃ Link with: -lrocblas

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

#include <rocblas.h>

int main(int argc, char ** argv) {
rocblas_int N = 500000;

// Allocate device memory
double * dx, * dy;
hipMalloc(&dx, sizeof(double) * N);
hipMalloc(&dy, sizeof(double) * N);

// Allocate host memory (and fill up the arrays) here
std::vector<double> hx(N), hy(N);

// Copy host arrays to device
hipMemcpy(dx, hx.data(), sizeof(double) * N, hipMemcpyHostToDevice);
hipMemcpy(dy, hy.data(), sizeof(double) * N, hipMemcpyHostToDevice);

const double alpha = 1.0;
rocblas_handle handle;
rocblas_create_handle(&handle);
rocblas_status status;
status = rocblas_daxpy(handle, N, &alpha, dx, 1, dy, 1);
rocblas_destroy_handle(handle);

// Copy result back to host
hipMemcpy(hy.data(), dy, sizeof(double) * N, hipMemcpyDeviceToHost);
hipFree(dx);
hipFree(dy);
return 0;

}

86

https://rocblas.readthedocs.io/en/latest/

Links to key libraries

▪ rocFFT: https://github.com/ROCmSoftwarePlatform/rocFFT

▪ hipSPARSE: https://github.com/ROCmSoftwarePlatform/hipSPARSE

▪ Rocalution: https://github.com/ROCmSoftwarePlatform/rocALUTION

▪ Tensile: https://github.com/ROCmSoftwarePlatform/Tensile

▪ RCCL (ROCm analogue of NCCL): https://github.com/ROCmSoftwarePlatform/rccl

▪ rocPRIM: https://github.com/ROCmSoftwarePlatform/rocPRIM

▪ rocRAND: https://github.com/ROCmSoftwarePlatform/rocRAND

▪ MIOpen: https://github.com/ROCmSoftwarePlatform/MIOpen

▪ Pytorch: https://github.com/ROCmSoftwarePlatform/pytorch

▪ Thrust: https://github.com/ROCmSoftwarePlatform/Thrust

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.87

https://github.com/ROCmSoftwarePlatform/rocFFT
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://github.com/ROCmSoftwarePlatform/rocALUTION
https://github.com/ROCmSoftwarePlatform/Tensile
https://github.com/ROCmSoftwarePlatform/rccl
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/ROCmSoftwarePlatform/rocRAND
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/ROCmSoftwarePlatform/pytorch
https://github.com/ROCmSoftwarePlatform/Thrust

Porting CUDA Applications to HIP
Nicholas Malaya <nicholas.malaya@amd.com>

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.88

Objectives

• This training:
• demonstrates how to convert CUDA codes into HIP
• explains the meaning of the term ‘hipify’
• provides a simple means to examine port quality
• provides an idea of the common ‘gotchas’ of porting apps

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.89

HIP Snapshot

• HIP: Heterogeneous-Compute Interface for Portability
• C++ runtime API and kernel language with CUDA-like APIs
• https://github.com/ROCm-Developer-Tools/HIP

• Capabilities:
• HIP 2.4 is the latest version (monthly releases)
• Supports features up to CUDA 8.0
• CUDA 9 and 10 features not supported
• Based on LLVM

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.90

https://github.com/ROCm-Developer-Tools/HIP

Getting started with HIP

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

__global__ void add(int n, double *x, double *y)
{
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)
{
y[i] = x[i] + y[i];
}

}

__global__ void add(int n, double *x, double *y)
{
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)
{
y[i] = x[i] + y[i];
}

}

KERNELS ARE SYNTACTICALLY THE SAME

CUDA DAXPY HIP DAXPY

91

CUDA APIs vs HIP API

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

 cudaMalloc(&d_x, N*sizeof(double));

 cudaMemcpy(d_x, x, N*sizeof(double),
cudaMemcpyHostToDevice);

 cudaDeviceSynchronize();

hipMalloc(&d_x, N*sizeof(double));

hipMemcpy(d_x, x, N*sizeof(double),
hipMemcpyHostToDevice);

hipDeviceSynchronize();

CUDA HIP

92

Launching a kernel

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

some_kernel<<<gridsize, blocksize,
shared_mem_size, stream>>>(arg0, arg1, ...);

hipLaunchKernelGGL(some_kernel, dim3(gridsize),
dim3(blocksize), shared_mem_size, stream,

arg0, arg1, ...);

CUDA KERNEL LAUNCH SYNTAX HIP KERNEL LAUNCH SYNTAX

93

How to port a CUDA code?

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.94

Enter HIPify

▪ Hipify tools are designed to help automatically convert CUDA code

▪ In practice, large portions of many HPC codes have been automatically Hipified:

⁃ ~90% of CUDA code in CORAL-2 HACC

⁃ ~80% of CUDA code in CORAL-2 PENNANT

⁃ The remaining code requires programmer intervention

▪ Tools (discussed in detail on subsequent slide):

⁃ Hipify-perl

⁃ Hipify-clang

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.95

HIPify tools

▪ Hipify-perl:

⁃ Easy to use –point at a directory and it will attempt to hipify CUDA code

⁃ Very simple string replacement technique: may make incorrect translations

⁃ sed -e ‘s/cuda/hip/g’, (e.g., cudaMemcpy becomes hipMemcpy)

⁃ Recommended for quick scans of projects

▪ Hipify-clang:

⁃ Requires clang compiler

⁃ More robust translation of the code. Uses clang to parse files and perform semantic translation

⁃ Can generate warnings and assistance for code for additional user analysis

⁃ High quality translation, particularly for cases where the user is familiar with the make system

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.96

Hipify-perl

▪ Sits in $HIP/bin/ (export PATH=$PATH:[MYHIP]/bin)

▪ Command line tool: hipify-perl foo.cu > new_foo.cpp

▪ Compile: hipcc new_foo.cpp

▪ How does this this work in practice?

⁃ Hipify source code

⁃ Check it in to your favorite version control

⁃ Try to build

⁃ Manually work on the rest

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.97

Hipify-clang

▪ Build from source

▪ hipify-clang has unit tests using LLVM lit/FileCheck (44 tests)

▪ Hipification requires same headers that would be needed to compile it with clang:

▪ ./hipify-clang foo.cu -I /usr/local/cuda-8.0/samples/common/inc

▪ https://github.com/ROCm-Developer-Tools/HIP/tree/master/hipify-clang

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.98

https://github.com/ROCm-Developer-Tools/HIP/tree/master/hipify-clang

Example: HACC

• Hardware Accelerated Cosmology Code

• Simulates time-evolution of universe

• Mpc = Megaparsec = 3.09 x 1022 meters

• Our HIP success story:

• Ported in an afternoon

• Profiling:

• 10% of time is spent in the tree walk

• >80% in the short force kernels

• (GPU kernel)

• 5% in the 3d Transposes / FFTs

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.99

HACC: What made it a success

• What was easy?

• Simple GPU kernel

• Few library dependencies (FFTW, not in kernel)

• No advanced CUDA features

• What was difficult?

• Inline PTX: required translation to AMD GCN

• Hand-written wave-32 code (for a reduction)

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.100

Porting HACC

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

cudaMemcpyAsync(d_npos,h_npos,sizeof(float4)*SIZE,cu
daMemcpyHostToDevice,stream);

cudaMemcpyAsync(d_mask,h_mask,sizeof(MASK_T)*cnt,
cudaMemcpyHostToDevice,stream);

calcHHCullenDehnen<<<blocksPerGrid, threadsPerBlock,
0, stream>>>(cnt, SIZE, d_npos, d_mask, rsm);

cudaMemcpyAsync(h_pos,d_npos+(SIZE-
cnt),sizeof(float4)*cnt,cudaMemcpyDeviceToHost,stream
);

cudaMemcpyAsync(h_mask,d_mask,sizeof(MASK_T)*cnt,
cudaMemcpyDeviceToHost,stream);

hipMemcpyAsync(d_npos,h_npos,sizeof(float4)*SIZE,hip
MemcpyHostToDevice,stream);

hipMemcpyAsync(d_mask,h_mask,sizeof(MASK_T)*cnt,h
ipMemcpyHostToDevice,stream);

hipLaunchKernelGGL((calcHHCullenDehnen),
dim3(blocksPerGrid), dim3(threadsPerBlock), 0, stream,
cnt, SIZE, d_npos, d_mask, rsm);

hipMemcpyAsync(h_pos,d_npos+(SIZE-
cnt),sizeof(float4)*cnt,hipMemcpyDeviceToHost,stream);

hipMemcpyAsync(h_mask,d_mask,sizeof(MASK_T)*cnt,h
ipMemcpyDeviceToHost,stream);

CUDA HIP

101

So you ported an application…

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.102

HACC: Comparison to the CUDA version

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

32 36

TITAN-V W/ CUDA 9.0 MI-25 W/ HIP (ROCM 1.9)

0

92.5% 84%

0

DIVERGENCE

REGISTER SPILLING

REGISTER USE (VGPR)

MEASUREMENT

103

Performance portability

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

30, 74, 44, 58, 53 12, 73, 25, 38, 24

TITAN-V W/ CUDA 9.0 MI-25 W/ HIP (ROCM 1.9)

0, 0, 0, 0, 0

97, 95, 70, 99, 78 97, 90, 71, 98, 82

0, 0, 0, 0, 0

DIVERGENCE

REGISTER SPILLING

REGISTER USE (VGPR)

MEASUREMENT

Pennant has 5 gpu kernels: Multiple entries denote each GPU kernel (GPUMain1, etc,)

Similar numbers observed in Quicksilver, HACC, etc

104

HIPified (ported) codes

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

QUICKSILVER HACC

SW4LITE HPL

PENNANT LAGHOS

AND (ALREADY) MANY MORE…

105

Tips and tricks for performance

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.

What to look for when porting:

• Inline PTX assembly
• CUDA intrinsics
• Hard-coded dependencies on warp size, shared memory size

• “grep 32”
• Do not use hard coded dependencies on warp size!

• Code geared toward limited size of register file on NVIDIA hardware
• Functions implicitly inlined
• Unified Memory

106

QUESTIONS?

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.107

AMD GPU programming resources

• ROCm platform: https://github.com/RadeonOpenCompute/ROCm/

• With instructions for installing from Debian/CentOS/RHEL binary repositories

• Has links to source repositories for all components, including HIP

• HIP porting guide: https://github.com/ROCm-Developer-
Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md

• ROCm/HIP libraries: https://github.com/ROCmSoftwarePlatform

• ROC-profiler: https://github.com/ROCm-Developer-Tools/rocprofiler

• Collects application traces and performance counters

• Trace timeline can be visualized with chrome://tracing

• AMD GPU ISA docs and more: https://developer.amd.com/resources/developer-guides-manuals/

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.108

https://github.com/RadeonOpenCompute/ROCm/
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md
https://github.com/ROCmSoftwarePlatform
https://github.com/ROCm-Developer-Tools/rocprofiler
https://developer.amd.com/resources/developer-guides-manuals/

CUDA features not supported by HIP

• CUDA 5.0 :

• Dynamic Parallelism (not supported)

• cuIpc functions (under development).

• CUDA 5.5 :

• CUPTI (not directly supported, AMD GPUPerfAPI an alternative in some cases)

• CUDA 6.0

• Managed memory (under development)

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.109

CUDA features not in HIP, cont.

• CUDA 7.0

• Per-thread-streams (under development)

• CUDA 8.0

• Page Migration including cudaMemAdvise, cudaMemPrefetch, other cudaMem* APIs (not
supported)

▪ https://github.com/ROCm-Developer-
Tools/HIP/blob/master/docs/markdown/hip_faq.md#what-specific-version-of-cuda-does-hip-
support

| Intro to AMD GPU Programming with HIP | ©2019 Advanced Micro Devices, Inc. All rights reserved.110

