
Shane Canon
IDEAS
Data & Analytics Group, NERSC

Containers in
HPC

- 1 -
February 5, 2019

Contents

• What are containers
• Why Containers
• Containers versus VMs
• What is Docker
• What is an image?
• Creating images

- 2 -

The Struggles

• My software doesn’t build on this system…
• I’m missing dependencies…
• I need version 1.3.2 but this system has version 1.0.2..
• I need to re-run the exact same thing 12 months from

now…
• I want to run this exact same thing somewhere else…
• I want my collaborators to have the same exact

software as me…
• I’ve heard about these Containers, can I just run that?
• Can I run docker on this HPC system?

- 3 -

Solution - Containers

What are Containers?
• Uses a combination of Kernel “cgroups” and

“namespaces” to create isolated environments
• Long history of containers Solaris Zones (2005),

LXC(2008), LMCTFY/Google and then Docker(2013)
• Docker provided a complete tool chain to simplify

using containers from build to run.
• Entire ecosystem has grown around containers

especially around orchestration.

- 4 -

Docker Basic’s

• Build images that
captures applications
requirements.

• Manually commit or
use a recipe file.

• Push an image to
DockerHub, a hosted
registry, or a private
Docker Registry.

• Share Images

• Use Docker Engine to
pull images down and
execute a container
from the image.

- 5 -

Why Containers?

• Light weight, executable piece of software that
contains everything you need to run it
– Code, system libraries and tools, environment, settings

• All software and processes are isolated from their
surroundings

• Portable
• Typically used for single instance programs

- 6 -https://github.com/NERSC/Shifter-Tutorial

Containers and Science

• Reproducibility
– Everything you need to redo a scientific analysis
– Image manifest contains all information about environment

• Scripts, portable input files can be managed with version controller for
greater control

• Portability
– Runs on every system

• Reduction of Effort
– Compile takes 10 hours? Just do it once and share it with

everyone
– System doesn’t have the right library version? Yum install it

yourself in the container

- 7 -https://github.com/NERSC/Shifter-Tutorial

Containers in Action - Demo

- 8 -

HPC Container Runtimes

- 9 -

Why Containers at NERSC
• NERSC deploys advanced HPC and data

systems for the broad Office of Science
community

• Approximately 6000 users and 750 projects

• Growing number of users around Analyzing
Experimental and Observational Data, ”Big
Data” Analytics, and Machine Learning

• Shift towards converged systems that
support traditional modeling and
simulation workloads plus new models

- 10 -

Why not just run Docker

• Security: Docker currently uses an all or nothing
security model. Users would effectively have
system privileges

• System Architecture: Docker assumes local disk
• Integration: Docker doesn’t play nice with batch

systems.
• System Requirements: Docker typically requires a

very modern kernel
• Complexity: Running real Docker would add new

layers of complexity

- 11 -

> docker run -it -v /:/mnt --rm busybox

Solution: Shifter

• Design Goals:
– User independence: Require no administrator assistance to

launch an application inside an image
– Shared resource availability (e.g., file systems and network

interfaces)
– Leverages or integrates with public image repos (i.e.

DockerHub)
– Seamless user experience
– Robust and secure implementation

• Hosted at GitHub:
– https://github.com/nersc/shifter

- 12 -

https://github.com/nersc/shifter

Implementation

- 13 -

Shifter Components

• Shifter Image Gateway
– Imports and converts images from

DockerHub and Private Registries

• Shifter Runtime
– Instantiates images securely on compute

resources

• Work Load Manager Integration
– Integrates Shifter with WLM

- 14 -

Shifter in Action

- 15 -

Usage slide

• Use shifterimg pull to pull images from a registry
– Only do this once or after an update

• Use shifter command to run a container with an
image

- 16 -

> shifterimg pull ubuntu:14.04

> shifter --image=ubuntu:14.04 bash
$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 14.04.5 LTS
Release: 14.04
Codename: trusty

Shifter accelerates Python Apps

- 17 -

Why?

• Python must walk through the python libraries to
construct the namespace

• Python must load up (read) any dynamic libraries
that are required

• The loader must traverse the LD_LIBRARY_PATH to
find the libraries to load

• Result: Lots of metadata accesses which put a load
on the file system Metadata server

- 18 -

Shifter and MPI

• In Image
– Add required libraries directly into image.
– Users would have to maintain libraries and rebuild images after

an upgrade.
• Managed Base Image (Golden Images)

– User builds off of a managed image that has required libraries.
– Images are built or provided as part of a system upgrade.
– Constrained OS choices and a rebuild is still required.

• Volume Mounting
– Applications built using ABI compatibility.
– Appropriate libraries are volume mounted at run time.
– No rebuild required, but may not work for all cases.

- 19 -

Running an MPI Job – Building
Image

FROM nersc/mpi-ubuntu:14.04

ADD . /app
RUN cd /app && \

mpicc –o hello helloworld.c

- 20 -

> docker build –t scanon/hello .
> docker push scanon/hello

Dockerfile

Running an MPI Job – Submit and
run

#!/bin/sh
#SBATCH –-image= scanon/hello
srun –np 10 shifter /app/hello

- 21 -

> sbatch submit.sl

submit.sl

Related Work and
Discussion

- 22 -

Other HPC Container Solutions

• Singularity
– Very popular
– Easy Installation
– Runtime similar to Shifter
– Native Image format in addition to Docker
– Commercial company (Sylabs) now developing it

• CharlieCloud
– Very light-weight
– No special privileges required
– Separate tools to unpack Docker images

- 23 -

How does Shifter differ from
Docker?

Most Noticeable
• Image read-only on the Computational Platform
• User runs as the user in the container – not root
• Image modified at container construction time (e.g. additional mounts)
Less Noticeable:
• Shifter only uses mount namespaces, not network or process

namespaces
• Shifter does not use cgroups directly (integrated with the Workload

Manager)
• Shifter uses individual compressed filesystem files to store images, not

the Docker graph (slows down iterative updates)
• Shifter starts some additional services (e.g. sshd in container space)

- 24 -

Why Users will like Shifter

Enables regular users to take advantage of Docker on HPC
systems at scale.
This enables users to:
• Develop an application on the desktop or laptop and

easily run it on a cluster or Supercomputer
• Solve their dependency problems themselves
• Run the (Linux) OS of their choice and the software

versions they need
And…
• Improves application performance in many cases
• Improves reproducibility
• Improves sharing (through sites like Dockerhub)

- 25 -

Acknowledgements

Cray

NERSC – Benchmarks and Use Cases
Lisa Gerhardt, Rollin Thomas, Wahid Bhimji, Debbie
Bard

Others – Contributors and Use Cases
CSCS, Vakho Tsulaia, Ted Kisner

- 26 -

This work was supported by the Director, Office of Science, Office
of Advanced Scientific Computing Research of the U.S.

Department of Energy under Contract No. DE-AC02-05CH11231.

Summary

• Shifter enables HPC systems to easily and securely run
Containers even at large scale

• Shifter provides the flexibility of Docker without sacrificing
security, scalability or performance.

• Shifter opens the door to the many benefits of Docker
including easy sharing of images, reproducibility, etc.

- 27 -

Shane Canon
NERSC Data and Analytics
Services

Shifter –
Advanced
Usage

- 28 -

January 14, 2019

Volume Mounts

• Volume Mounts provide a way to map external
paths into container paths.

• This allows paths in the container to be abstracted
so it can be portable across different systems.

• Basic syntax is:
–volume <external path>:<container path>

• Shifter places some constraints on what paths can
be mapped and where they can be mapped for
added security.

- 29 -

Using Volume Mounts
anon@cori06:~> ls $SCRATCH/myjob
config data.in

canon@cori06:~> shifter --image=ubuntu --volume=$SCRATCH/myjob:/data bash
canon@cori06:~$ ls /data/
config data.in

canon@cori06:~$

- 30 -

PerNode Write Cache

• PerNodeWrite extends the volume concept to
create temporary writeable space that aren’t
shared across nodes.

• These spaces are ephemeral (removed on exit)
• These are node local and the size can be adjusted
• Performs like a local disk but is more flexible
• Basic syntax is

--volume <external path>:<container path>:perNodeCache=size=XXG

- 31 -

Using Volume Mounts
canon@cori06:~> shifter --image=ubuntu \

--volume=$SCRATCH:/scratch:perNodeCache=size=100G /bin/bash
canon@cori06:~$ df -h /scratch/
Filesystem Size Used Avail Use% Mounted on
/dev/loop4 100G 33M 100G 1% /scratch
canon@cori06:~$ dd if=/dev/zero bs=1k count=10M of=/scratch/output
10485760+0 records in
10485760+0 records out
10737418240 bytes (11 GB, 10 GiB) copied, 22.2795 s, 482 MB/s
canon@cori06:~$ ls -lh /scratch/output
-rw-r--r-- 1 canon canon 10G Nov 9 23:38 /scratch/output
canon@cori06:~$ exit
exit
canon@cori06:~> shifter --image=ubuntu \

--volume=$SCRATCH:/scratch:perNodeCache=size=100G /bin/bash
canon@cori06:~$ ls -l /scratch
total 0

- 32 -

Optimizations

- 33 -

Dockerfile Best Practices

- 34 -

RUN wget http://hostname.com/mycode.tgz
RUN tar xzf mycode.tgz
RUN cd mycode ; make; make install
RUN rm -rf mycode.tgz mycode

RUN wget http://hostname.com/mycode.tgz && \
tar xzf mycode.tgz && \
cd mycode && make && make install && \
rm -rf mycode.tgz mycode

Bad:

Good:

Dockerfile Best Practices

- 35 -

RUN wget http://hostname.com/mycode.tgz ; \
tar xzf mycode.tgz ; \
cd mycode ; make ; make install ; \
rm -rf mycode.tgz mycode

RUN wget http://hostname.com/mycode.tgz && \
tar xzf mycode.tgz && \
cd mycode && make && make install && \
rm -rf mycode.tgz mycode

Bad:

Good:

http://hostname.com/mycode.tgz

Dockerfile Best Practices

- 36 -

ADD . /src

RUN apt-get update –y && atp-get install gcc

RUN cd /src && make && make install

RUN apt-get update –y && apt-get install gcc

ADD . /src

RUN cd /src && make && make install

Bad:

Good:

Multi-Stage Builds

• Added in Docker 17.05
• Allows a build to progress through stages
• Files can be copied from a stage to later stages
• Useful for splitting images between build and run-

time to keep image sizes small
• Can be used to make public images that make use

of commercial compilers

- 37 -

Dockerfile – Multistage build

- 38 -

FROM centos:7 as build
RUN yum -y install gcc make
ADD code.c /src/code.c
RUN gcc -o /src/mycode /src/code.c

FROM centos:7
COPY --from=build /src/mycode /usr/bin/mycode

Other Considerations

• Avoid very large images (> ~5 GB)
• Keep data in $SCRATCH and volume mount into the

container if data is large
• Use volume mounts for rapid prototyping and

testing, then add that into the image after code
stabalizes

- 39 -

GH
z SINGLE DAY MAPS FULL SEASON MAPS

TEMPERATURE POLARIZATION TEMPERATURE POLARIZATION

20
30

40
95

15
0

22
0

27
0

Measuring the Composition of the Universe
• CMB – S4

– Ambitious collection of
telescopes to measure the
remnants of the Big Bang with
unprecedented precision

• Simulated 50,000 instances
of telescope using 600,000
cores on Cori KNL nodes.

• Why Shifter?
– Python wrapped code needs to

start at scale

Questions?

- 41 -

Create an image with Docker

FROM ubuntu:14.04
LABEL maintainer=“Shane Canon scanon@lbl.gov”
Update packages and install dependencies
RUN apt-update –y && \

apt-get install -y build-essential

Copy in the application
ADD . /myapp
Build it
RUN cd /myapp && \

make && make install

- 42 -

Dockerfile

> docker build –t scanon/myapp:1.1 .

mailto:scanon@lbl.gov

Running an image with Docker

- 43 -

> docker run -it –rm scanon/myapp:1.1 /myapp/myapp
…
App Output
….

Popular features of a data intensive
system and supporting them on Cori

- 44 -

Data Intensive Workload Need Cori Solution

Local Disk NVRAM ‘burst buffer’ and Shifter

Large memory nodes 128 GB/node on Haswell;
Large memory login and service nodes

Massive serial jobs NERSC serial queue

Complex workflows Shifter
CCM mode
Large Capacity of interactive resources

Communicate with databases from
compute nodes

Advanced Compute Gateway Node

Stream Data from observational facilities Advanced Compute Gateway Node

Easy to customize environment Shifter

Policy Flexibility Improvements coming with Cori:
Rolling upgrades, CCM, above COEs would also
contribute

Converging Data Intensive Systems and
HPC

Compute Intensive Data Intensive

Carver

Mendel
Complex

Why Convergence?

• Scale: Cori will have the scale needed to tackle
current and emerging data challenges

• Coupling: Increasing Need to Couple Simulation and
Analysis

• Capabilities: Access to the Burst Buffer
• Exascale: Helps place data intensive communities on

exascale path

What’s in an Image

• Directory tree
– Base Linux OS
– Libraries, binaries, tools, scripts, etc
– User code
– Data

• Run-time Settings
– Environment variables
– Working Directory
– Default execution and parameters

• Other things
– Network-related (e.g. ports)
– Run User

- 46 -

Singularity

• Can pull and use Docker images. Converted
to a singularity file.

• Has its own recipe file and build tools
• Images are flat (no layers)
• Images can be copied like regular files

- 47 -

Singularity Recipe File Example
Bootstrap: docker
From: ubuntu

%help
Example Singularity Image

%files
script.sh /script.sh

%labels
Maintainer I. M. Maintainer
Version v1.0

%environment
FOO=bar
export FOO

%post
apt-get update -y
apt-get install -y curl
echo 'export BAR=blah' >> $SINGULARITY_ENVIRONMENT

%runscript
exec /script.sh

- 48 -

> singularity build myimage.simg Singularity

Singularity

Containers versus VMs

- 49 -https://github.com/NERSC/Shifter-Tutorial

Singularity Execution

- 50 -

> singularity shell myimage.simg
Singularity myimage.simg:~>

> singularity run myimage.simg
Hello World

> singularity shell docker://ubuntu:latest
Singularity ubuntu:~>

Charliecloud

• https://github.com/hpc/charliecloud
• No root privs required for installation
• Does require user namespace report

(increasingly common now)
• https://hpc.github.io/charliecloud/index.

html

- 51 -

https://github.com/hpc/charliecloud
https://hpc.github.io/charliecloud/index.html

Per-Node Write Cache (IOPS)

- 52 -

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0 50 100 150 200 250 300

IO
PS

 (M
)

Nodes

IOPS vs Writers

Results of an IOR File per-process, 2 tasks per node, 512B transfer size, 2GB
write. 100x faster than Lustre at the same scale.

	Shane Canon�IDEAS�Data & Analytics Group, NERSC�
	Contents
	The Struggles
	Solution - Containers
	Docker Basic’s
	Why Containers?
	Containers and Science
	Containers in Action - Demo
	HPC Container Runtimes
	Why Containers at NERSC
	Why not just run Docker
	Solution: Shifter
	Implementation
	Shifter Components
	Shifter in Action
	Usage slide
	Shifter accelerates Python Apps
	Why?
	Shifter and MPI	
	Running an MPI Job – Building Image
	Running an MPI Job – Submit and run
	Related Work and Discussion
	Other HPC Container Solutions
	How does Shifter differ from Docker?
	Why Users will like Shifter
	Acknowledgements
	Summary
	Shane Canon�NERSC Data and Analytics Services�
	Volume Mounts
	Using Volume Mounts
	PerNode Write Cache
	Using Volume Mounts
	Optimizations
	Dockerfile Best Practices
	Dockerfile Best Practices
	Dockerfile Best Practices
	Multi-Stage Builds
	Dockerfile – Multistage build
	Other Considerations
	Measuring the Composition of the Universe
	Questions?
	Create an image with Docker
	Running an image with Docker
	Popular features of a data intensive system and supporting them on Cori
	Converging Data Intensive Systems and HPC
	What’s in an Image
	Singularity
	Singularity Recipe File Example
	Containers versus VMs
	Singularity Execution
	Charliecloud
	Per-Node Write Cache (IOPS)

